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Abstract

Estimating the effect of air pollution on aggregate economic output is challenging
because pollution increases with GDP, biasing estimates upward. Standard approaches
like differencing with district and year fixed effects reduce but do not eliminate this
bias, necessitating a credible instrument. I leverage a natural experiment in India
created by groundwater-conservation mandates in two northern states, which shifted
crop-residue fires from October into November, when cool air and calm winds trap
particulate matter. Satellite fire detections and wind trajectories show that a 10%
increase in exposure to upwind November fires raises annual district PM2.5 by 0.3%,
while October fires have no impact. Using this exogenous variation as an instrument
in first-differenced district panels, I estimate a 1% rise in PM2.5 reduces real GDP by
0.18%, highlighting substantial economic damage from pollution in developing coun-
tries.
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1 Introduction

The literature documents wide-ranging impacts of particulate matter less than 2.5 microns
in diameter (PM2.5), including on human health and mortality (Schlenker and Walker 2016;
Deryugina et al. 2019), worker and firm productivity (Graff Zivin and Neidell 2012; Chang
et al. 2019; Fu et al. 2021; Adhvaryu et al. 2022; Borgschulte et al. 2022a; Leroutier and
Ollivier 2025), among others. But evidence for the effect of pollution on aggregate economic
output as measured through the Gross Domestic Product (GDP) is surprisingly rare, with
Dechezleprêtre et al. (2019) being an exception. One reason for this lack of evidence may
be that solving the endogeneity problem of positive correlation between growth in GDP
and pollution is difficult. This paper develops a novel instrument that leverages variation
in PM2.5 driven by exogenous policy changes in upwind crop burning and mediated by
meteorological conditions to quantify the consequences for economic growth.

India has the highest average PM2.5 concentrations in the world at 7 times the WHO stan-
dards (Greenstone 2021). It is also home to almost 20% of the world’s population. Therefore,
it is an important context to study this problem. It is also a rapidly growing economy, and
while PM2.5 concentrations are a consequence of that growth, they may also pose a threat
to it. I analyze the effect of PM2.5 levels on GDP using newly available panel data for 530
Indian districts between 2007 and 2013. In order to account for the non-stationary nature of
the GDP data1, I utilize district-specific time trends as well as a first differences approach.
The latter performs better with strongly non-stationary data series and is commonly used in
macroeconomic analysis of GDP data (Wooldridge 2010). Identification of the causal effect
of PM2.5 on district GDP relies on yearly deviations in PM2.5 being plausibly exogenous,
controlling for year and district fixed effects as well as time trends. However, causality may
yet run from GDP to PM2.5, with larger yearly deviations in pollution systematically being
a result of higher economic growth in that district in the given year. I develop a novel solu-
tion to this endogeneity concern by leveraging an exogenous groundwater policy change that
inadvertently increased downwind PM2.5 without directly affecting GDP growth in those
downwind districts.

Groundwater depletion due to over-exploitation of aquifers is a well-documented and pressing
problem in India, particularly in the two northern states of Punjab and Haryana (World Bank
2021). These states had long encouraged farmers to extract groundwater at close to zero
marginal price for the irrigation of the water-intensive rice crop.2 Farmers in these states had

1 Average yearly district GDP growth rate in this period was 7%.
2 Rice is synonymous with paddy, with interchangeable references to paddy or rice fields.
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been able to grow sufficient foodgrains, and the country had avoided regular famine events
as a result (Pingali 2012). But, by the early 2000s, these state governments had realized the
need to protect groundwater resources in the interest of long-term local growth. Rather than
incentivizing a shift away from the rice crop or instituting a marginal price for groundwater3,
these states decided to force farmers to push back the dates of rice transplantation4 from
mid-May to mid-June, hoping that the arrival of the monsoon by late June would reduce
dependence on groundwater to grow rice.

Farmers in Punjab and Haryana had followed the practice of setting fire to their fields
after the rice harvest in October in order to prepare the same fields for planting the staple
wheat crop. These fires clear out leftover residue after rice harvest that come in the way
of planting wheat seeds, and had become popular as the cheapest method to get rid of
this residue. Although agricultural fires are nominally illegal, enforcement is rare, with an
average expected fine in Haryana of 0.75 USD while the average marginal cost to clear the
field without fires is 50 USD (Behrer 2019; Lohan et al. 2018). By forcing a shift in the
transplantation dates to early June in order to conserve groundwater, these states also shifted
rice cultivation dates and the incidence of burning from October into November. Any delays
in the planting of the wheat crop can reduce yields (McDonald et al. 2022), so many farmers
also had a stronger incentive to utilize fires to clear fields.

I utilize a two-way fixed effects design with information on the timing of the groundwater
laws to document that the laws increased November fire count by 54% and the measure
of biomass burnt by 72% in districts of Punjab and Haryana. Small anticipation effects
imply that these may be slight underestimates. At the same time, October fire count and
measure of biomass burnt decreased by 58% and 57% respectively. Since winter fire activity
is predominantly concentrated in these two months, these results document the shift in
monthly fire patterns toward early winter. Therefore this policy change had the unintended
consequence of shifting the peak of agricultural fires from October into November, when
the onset of winter brings lower wind speeds and temperatures that slow the dispersion of
particulate matter (Vallero 2014).

Next, I develop a novel method to capture the effect of this increase in November fire activity
on annual PM2.5 levels. I construct an origin-destination-by-day specific measure of how
exposed any given district is to fires in upwind districts on any given day. I calculate this

3 The marginal price of groundwater extraction continues to be close to zero, since electricity for pumps
is subsidized with flat tariffs rather than marginal pricing, and any outstanding farm electricity bills are
rarely paid back to state distribution companies.

4 This process of moving seedlings grown in nurseries into fields reduces weed removal and produces
higher yields. More details at http://www.knowledgebank.irri.org/training/fact-sheets/crop-establishment/
manual-transplanting
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metric by weighting the proxy of biomass burnt in an origin district by the fraction of time
during the day when wind was blowing from that origin to a destination district, penalized
by the distance between these districts. Then I calculate monthly “fire exposure” of a district
by summing across all possible origins separately for each month of the year. I show that
November fire exposure strongly affects annual PM2.5 levels, with changes in upwind fire
exposure explaining 4.2% of annual deviations in within-district PM2.5, compared to 16%
explained by local weather. In contrast, October fire exposure does not have a strong effect
on annual PM2.5 levels. This result can be explained by the calmer winds and cooler air
of the early winter in November that trap particulate matter, in contrast to stronger winds
and higher precipitation that characterize the late monsoon month of October and result in
rapid removal of particulate matter from the atmosphere.

Finally, I use the November fire exposure as an instrument to tackle the endogeneity con-
cern that shocks to GDP growth are correlated with increase in local pollution even after
accounting for fixed but unobservable determinants and time trends. With this instrument,
I show that a 1% increase in PM2.5 levels reduces GDP by 0.18% in Indian districts. In
comparison, Dechezleprêtre et al. (2019) find an elasticity of -0.08 for NUTS-3 level regions
in Europe using thermal inversions as the instrument. Thermal inversions are likely to occur
in some places more than others, leaving some residual correlation with fixed determinants
of GDP such as the presence of ports, network effects etc. The use of location fixed effects
can reduce this problem; but there may not be large changes in the distribution of thermal
inversions over a short period of time, so this may be a weak instrument with fixed effects. A
strength of my approach is to rely on an exogenous policy change that drives clear and large
changes in pollution across Indian districts during the time period of study. This provides
an especially credible method to estimate the effect of air pollution on economic output.

This paper contributes to two main literatures. The relationship between economic growth
and the environment at various levels of development is poorly understood. The Environ-
mental Kuznets Curve hypothesized an inverted-U shape, with economic growth worsening
environmental outcomes at low levels of GDP per capita, but improving these outcomes at
high levels (Grossman and Krueger 1995; Stern 2017).5 I focus on uncovering a causal mech-
anism behind how air pollution affect GDP per capita, documenting that the protection of
groundwater resources in India increased air pollution, contributing to a small but growing
literature that is focused on uncovering such causal mechanisms (Jayachandran 2022). The

5 For a sample of urban areas across the world, Jayachandran (2022) documents that greenhouse gas
emissions keep increasing with GDP per capita, lead pollution displays the EKC inverted-U pattern, air
pollution (particulate matter concentrations) displays a linear and correlation while Ozone does not display
any correlation at all.
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resulting cost of air pollution to economic growth is larger in India compared to evidence
from Europe (elasticity of -0.18% vs -0.08% in Dechezleprêtre et al. (2019))

This paper also contributes to the literature on how institutions affect environmental out-
comes in developing countries. More stringent regulation (Burgess et al. 2019), use of
technology (Assunção et al. 2022) and higher resource allocation to monitoring and enforce-
ment (Duflo et al. 2018) can improve environmental outcomes in developing countries. Weak
state capacity impedes the implementation of regulations on the books that prohibit the use
of fires in agriculture in Punjab and Haryana, leading to large economic costs. Another
explanation may be that while the groundwater externality is localized to the two states, the
air pollution externality is an inter-state phenomenon. Lipscomb and Mobarak (2017) show
that decentralization of regulatory authority in Brazilian municipalities leads to larger water
pollution externalities across border. Kahn et al. (2015) document that providing promo-
tion incentives to reduce some water pollutants to local officials reduces their externality
on downstream neighbors. While the states of Punjab and Haryana are able to success-
fully implement one set of laws intended to conserve local groundwater, they are unable
(or unwilling) to implement regulations on fires, which cause downwind externalities on top
of local ones. This result suggests that designing regulatory institutions for environmental
protection at the appropriate level is important in determining the outcomes of regulation,
including for economic growth.

The rest of the paper is structured as follows. Section 2 describes the data while section 3
presents the context, section 4 presents the research design, section 5 describes the results,
and section 6 concludes.

2 Data

2.1 Air quality

An important consideration for air quality data is complete geographical coverage. Whereas
ground-level monitoring station coverage in India is extremely sparse (Greenstone and Hanna
2014), satellite imagery-based products provide complete coverage. Secondly, ground-level
observations may be susceptible to manipulation (Greenstone et al. 2022; Ghanem and
Zhang 2014). Therefore, the main source of data on air quality is Hammer et al. (2020), a
gridded reanalysis product of global surface PM2.5 concentrations at a resolution of 0.01∘

that should be much less susceptible to such manipulation. This product combines satellite
imagery data on Aerosol Optical Depth with state-of-the-art chemical transport models, and
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calibrates the output to global ground-based observations. It is easy to aggregate the gridded
product to the necessary resolution for analysis at pixel, city or district level. Forthcoming
sections will detail the aggregation procedure for each analysis.

2.2 GDP

To estimate the impacts of PM2.5 on GDP, we would like data at the most granular sub-
national level possible. While satellite-based data on PM2.5 levels are available at a 1x1
km grid, output data are rarely available at such sub-national scales. Fortunately, GDP
measures at the district level in India between 2007-2013 have recently been compiled by
the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in their
District Level Database (DLD).6 I clean and combine these data with other district-level
data using district identifiers from ICRISAT and the Census of India, 2011.

2.3 Agricultural fires

The burning of residue from crop harvest is referred to as agricultural fires. To analyse the
impact of the groundwater conservation laws on the monthly pattern of fires, the ideal data
would include precise location of each individual fire set for the purpose of burning crop
residue. But there are no representative ground-level observations of this phenomenon. To
overcome this challenge, I utilize the Fire Information for Resource Management System
(FIRMS) product from the National Aeronautics and Space Administration (NASA) agency
of the United States that is widely used to identify terrestrial fires. This product provides
information on daily fires detected at latitude/longitude level across the world and has been
recently used to analyze agricultural fires in the economics literature (Behrer 2019).

FIRMS provides a few related products: Near-Real Time (NRT) fires using the MODIS
instrument aboard Terra and Aqua satellites, standard product from the same instrument
but with a 2-3 month lag and another NRT product using the VIIRS instrument from the
Suomi-NPP and NOAA-20 satellites. The main difference between the first two and the third
is the resolution of the data. MODIS products are at 1 km resolution and are available from
2000 (more reliable from 2002 when Aqua satellite was launched) whereas VIIRS products are
at 375 m but only available from 2012. The primary analysis utilizes the MODIS standard
product which differs from the NRT data in that corrections are made to the imprecise
location of the Aqua satellite in the NRT data. Imagery data from Aqua and Terra satellites

6 http://data.icrisat.org/dld/src/crops.html
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is available at least four times daily for each pixel on Earth and is processed using a NASA
algorithm isolate a ground-level fire signal from other signals such as solar flares.

I combine this data with information on land use from the European Space Agency Climate
Change Initiative’s land cover map (version 2.07) 7. This allows the subset of fires that
is found on agricultural land to be separated from natural forest fires since this paper is
interested in agricultural fires. I aggregate and resample the land cover data which is at a
resolution of 300 m to the fire data grid (at 1 km resolution), with an indicator for agricultural
land use as the main output from this process. All fires are then masked based on this
indicator variable to find the subset of agricultural fires.

2.4 Meteorology

Hourly wind data are used to construct exposure to agricultural fires for every origin-
destination pixel pair. Details of the methodology follow in the section 3 below. The source of
these wind data is the European Center for Medium Range Weather Forecasting (ECMWF)
ERA5 family of global gridded reanalysis datasets.8. Reanalysis data combine ground-level
observations and satellite data with Chemical Transport Models that represent physical and
chemical processes in the atmosphere to produce reliable and complete coverage for the
world. Since ground-level observations are particularly sparse in developing countries these
reanalysis data are widely used in the literature on climate and air pollution in Economics
(Auffhammer et al. 2013) Hourly wind speed and direction data are taken from the ERA5-
Land hourly dataset which is available at a resolution of 0.1∘. These are combined with
daily agricultural fires at the pixel level to construct the fire exposure variable. Apart from
being used to quantify the contribution of distant residue burning on local air pollution, fire
exposure also is an instrument for pollution at the city and district level in estimation of
certain elasticities. Finally, I also construct temporal averages for weather variables includ-
ing rainfall, temperature and relative humidity from this dataset to be used as controls in
the regression analysis.

7 Data is available at https://cds.climate.copernicus.eu/cdsapp/#!/dataset/satellite-land-cover
8 Data available at https://cds.climate.copernicus.eu
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3 Background

3.1 Air pollution in India

Almost all of India’s population in 2011 experienced pollution levels substantially higher
than the World Health Organization (WHO) limit for particulate matter below 2.5 microns
in size.9 Exposure to such pollution can affect the physical productivity of workers (Graff
Zivin and Neidell 2012; Chang et al. 2016, 2019), reduce their labor supply and earnings
(Hanna and Oliva 2015; Borgschulte et al. 2022b; Hoffmann and Rud 2024), and affect
property prices (Bayer et al. 2009; Freeman et al. 2017). Yet, there is lack of good evidence
on how such high pollution levels affect aggregate economic output in a large country like
India. This is the gap I seek to fill in this paper.

3.2 Groundwater conservation and air pollution

I utilize exogenous variation in air pollution that is driven by the groundwater conservation
policy. Before discussing the construction and use of this instrument in the research design
section, I provide some background on how groundwater conservation could have caused
exogenous variation in air pollution.

India is the largest user of groundwater in the world; but with almost 20% of the world’s
population, it only has about 4% of the world’s freshwater resources (World Bank 2021).
The resulting overuse of groundwater to meet population needs has caused rapid aquifer
depletion and led to an urgent environmental crisis, particularly affecting the alluvial plains
of North-Western India. I discuss the factors behind this depletion in the North-Western
states of Punjab and Haryana, leading to the passage of a set of groundwater conservation
laws in 2009. I then discuss how these laws may have unintentionally pushed agricultural fires
into early winter, when their impact on air pollution is exacerbated due to meteorological
conditions.

9 This form of pollution is commonly knows as PM2.5 and is known to cause serious health effects. Both
short-term and prolonged exposure to PM2.5 can lead to heart attacks, asthma, decreased lung function
or cancer, stroke and a variety of other conditions, and cause premature mortality in people with heart or
lung diseases (Greenstone 2021). The WHO annual average limit is 5 𝜇g/m3. According to their PM2.5
database, Delhi’s annual average PM2.5 level was 153 𝜇g/m3 in 2013, in comparison with New York city’s
average of 14 and London’s at 16.
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3.2.1 The need for groundwater conservation

Until the advent of the so-called Green Revolution of the 1960s that raised agricultural
productivity dramatically across India and much of the poor world (Pingali 2012), North-
Western India was a primarily wheat-growing region with little rice consumption or produc-
tion locally. One of the institutional innovations of the Green Revolution in these states was
the provision of large subsidies for tubewells and borewells. Individual farmers could now
access shallow groundwater to irrigate fields even if they did not have access to the large,
pre-existing canals systems built by the colonial British empire. Over time, modern pumps
running on electricity were combined with practically zero tariffs to farmers so that they
could irrigate their fields at minimum cost.

This newfound access to groundwater allowed farmers to diversify their crop portfolio by al-
lowing the cultivation of the highly water-intensive rice crop during the “Kharif” or monsoon
season (June-October). The wheat crop is cultivated during the “Rabi” or winter season,
when the lower temperatures and plenty of sunshine provide perfect weather conditions for
growth (Kataki et al. 2001); planting happens in early winter and harvest in early spring.

The state of Punjab contributed less than 1% of India’s rice in 1961; by the late 1990s
this figure was up to 10%; absolute rice output across India rose from 11 million tonnes
to 75 million tonnes in this period, underlining the massive increase in rice cultivation in
Punjab (Subramanian 2017). Similar trends in rice cultivation were seen in Haryana. This
fundamental change in the cropping patterns of the region exacerbated the depletion of
groundwater resources, since the paddy fields were flooded primarily using groundwater,
pumped out before the annual monsoon reached Punjab and Haryana. Taken together, the
unregulated exploitation of groundwater had led to an acute water crisis by the early 2000s,
although concerns about excessive extraction almost 1.5 times the natural recharge rate had
been expressed by agricultural scientists and government committees going back to the 1980s
(Singh 2009).

Despite the alarm expressed by various stakeholders, the state governments largely ignored
the problem until the early 2000s. When asked about these concerns, the then-Chief minister
of Punjab, Prakash Singh Badal, is quoted in the media as saying, ”The problem is not
as acute as is being projected. It is a theoretical evaluation and there is no truth in it”
(Down To Earth 1999). The political economy of both states, but particularly of Punjab,
centers around medium and large sized farmers who receive a range of state subsidies that
incentivizes rice and wheat cultivation. Apart from the Green Revolution era technological
subsidies for higher-yielding seeds, fertilizers and pesticides, tubewells and electric pumps,
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provision of cheap electricity is also important in explaining groundwater levels (Ryan and
Sudarshan 2020). Often these dues are not paid to state distribution companies at all,
resulting in lack of investment in the power grid (World Bank 2018). But, most importantly,
the procurement of wheat and rice crop by the state governments of Punjab and Haryana at
so-called Minimum Support Prices that distort market signals (Parikh et al. 2003) precludes
farmers from switching to other crops with higher price and yield risks.

3.2.2 What was the groundwater conservation mandate?

The practice of transplantation of rice before mid-June was thought to be particularly cause
too much reliance on groundwater (Singh 2009). In response, sections of the state bureau-
cracy had made efforts starting in the early 2000s to shift the transplantation of rice closer
to the monsoon, since this was thought to ease the strain on groundwater use. The two
governments took executive action through ordinances in 200810 to extend the practice of
delaying rice transplantation state-wide. Given the generally favorable response to this ordi-
nance, the legislatures of Punjab and Haryana separately ratified the Preservation of Subsoil
Water Acts of 2009 (“laws” from now on) in an effort to conserve groundwater.

These laws prohibited early transplanting of rice before the monsoon in an attempt to reduce
groundwater usage for irrigation. Much of the rice transplantation would occur in the peak
of summer during May when evapotranspiration (water loss from plants as well as soils and
water bodies) is high. These laws specified June 10 as the earliest transplantation date, and
it was shifted further to June 20 later11. When planting rice in May, farmers were solely
dependent on groundwater reserves for rice growth; moving transplantation to June allowed
rice growth to depend more on monsoon rainfall. This was expected to lead to a lower rate
of groundwater extraction.12

3.2.3 Potential displacement of fires into November due to policy

The primary use of fires in Indian agriculture today is to clear the field of leftover residue
from harvesting a crop, before sowing and planting the next crop (Shyamsundar et al. 2019);
this differs from slash-and-burn agriculture that is practiced in parts of Africa and Indonesia

10 These do not have the same power in Indian law as a statute and cannot be renewed beyond a few
months.

11The Indian Met Department (IMD) sets out July 1 as the expected date of onset of the monsoon in
North-Western India. Details here

12 Groundwater recharge is typically a slow-moving process that takes place over a longer period than the
period of study here. I plan to conduct an assessment of the change in groundwater levels to the present
day due the policy in the future
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(Andini et al. 2018). Figure 1 shows that agricultural fires are concentrated in the states of
Punjab and Haryana, which are also characterized by a Rice-Wheat crop system.

In the Rice-Wheat system of Punjab and Haryana, fires are used to clear rice residue before
the planting of the wheat crop on the same land, since rice residue comes in the way of
planting wheat. This practice dates back at least to the 1990s. The earliest observations
of fires from the NASA FIRMS database (described in the next section) starting in 2002
clearly demonstrate that North-western India already had a disproportionate share of fires
in Indian agriculture.

The delay in rice transplantation due to the laws also pushed back harvest dates. The
resulting delay in rice harvest from mid October to late October and November meant that
farmers had fewer days between rice harvest and wheat plantation. Any delays in wheat
plantation beyond the first two weeks of winter reduces yields substantially (McDonald et
al. 2022). Therefore, the law may have had the unintended consequence of increasing the
intensity of agricultural fires in November, when slower winds and lower temperatures tend
to worsen downwind air quality.

4 Research Design

4.1 Effect of PM2.5 on GDP

This section describes the estimation strategy for the causal impact of higher PM2.5 levels on
district GDP in India. I build up to an instrumental variables strategy for PM2.5 that allows
the quantification of impact of the groundwater laws on downwind GDP. Before describing
this IV strategy, equation (1) presents an OLS regression model of the effect of PM2.5 on
district GDP.

𝑙𝑜𝑔(𝐺𝐷𝑃𝑑𝑦) = 𝛽 𝑙𝑜𝑔(𝑃𝑀𝑑𝑦) + 𝛾 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + 𝑔𝑑 ∗ 𝑡 + 𝛼𝑑 + 𝑌𝑦 + 𝜖𝑑𝑦 (1)

𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 = {𝑇 𝑒𝑚𝑝𝑑𝑦, 𝑇 𝑒𝑚𝑝_𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑑𝑦, 𝑅𝑎𝑖𝑛𝑑𝑦, 𝑅𝑎𝑖𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑑𝑦,
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑑𝑦, 𝑆𝑢𝑟𝑓𝑎𝑐𝑒_𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑑𝑦, 𝑊𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑑𝑦}

The quantity of interest 𝛽 is the percentage reduction in GDP for a 1% increase in PM2.5
levels. This model contains district and year fixed effects 𝐷𝑑 and 𝑌𝑦 respectively, which
control for fixed factors that raise productivity or increase pollution as well as account
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for any common macroeconomic shocks. Weather variables such as temperature, rainfall,
humidity and wind speed are known to affect PM2.5 (Dechezleprêtre et al. 2019; Bondy et
al. 2020). Therefore, I control for yearly average weather that could determine the level of
pollution from given emissions.

The main residual concern with identification of 𝛽 in this model is that deviations of GDP
and PM can be jointly determined. Higher economic activity in a given year can itself cause
an increase in PM that year by increasing emissions. At the same time, higher deviation in
PM can stunt GDP growth that year through channels such as increased worker morbidity
and lower labor productivity. We would like to identify the second channel and avoid the
former.

I adopt three approaches to tackle this endogeneity issue. Figure 4 shows that GDP exhibits
strong growth in this period and therefore is not stationary; between 2007-2013, average
Indian GDP growth rate was 7%. First, I fit a district-specific linear time trend 𝑔𝑑 ∗ 𝑡 in
GDP. The time trend will capture district-specific factors that cause constant GDP growth,
leaving only deviations from the trend line in the outcome. This approach can also help
reduce omitted variables bias (OVB) that jointly determines both GDP and PM2.5 (eg.
demand shocks that affect certain districts). Such OVB can cause the causal chain to run
from GDP to PM2.5, leading to reverse causality that biases the estimate upwards, since an
increase in economic activity increases PM2.5 levels.

Secondly, I also conduct analysis using first differences (FD) that is the preferred over fixed
effects to deal with non-stationary, autocorrelated data series in both outcome and explana-
tory variables. An FD specification that also includes a fixed effect is the same as allowing
for a district-specific linear growth rate 𝑔𝑑. The FD approach is commonly used in the
macroeconomic literature to deal with serial correlation in aggregated GDP data. Equation
(2) specifies the regression framework for the FD model.

Δ𝑙𝑜𝑔(𝐺𝐷𝑃𝑑𝑦) = 𝛽 Δ𝑙𝑜𝑔(𝑃𝑀𝑑𝑦) + 𝛾 Δ𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + 𝑔𝑑 + Δ𝑌𝑦 + Δ𝜖𝑑𝑦 (2)

This specification examines how the growth rate of PM2.5 affects the growth rate of GDP,
controlling for year-on-year changes in weather and common macroeconomic conditions. The
district fixed effect 𝑔𝑑 captures the constant growth rate of GDP in these districts. But even
with the FD design, there may still be some OVB in the leftover variation, leading to reverse
causality that biases the results upwards.

The third approach utilizes the fact that the stock of pollution in a district is partially due to
sources outside the district, notably agricultural fires in this instance. Using an instrument
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for PM2.5 defined in the next section with both the panel and FD specifications allows us
to tackle the reverse causality challenge.

Inference : Recent methodological guidance on inference from Abadie et al. (2023) cau-
tions against leaning towards conservatism. They distinguish between sampling-based and
design-based uncertainty. Sampling-based uncertainty arises when there is within-unit cor-
relation in a sample, such as worker incomes in a given location. Aggregated GDP across a
large spatial unit such as a district naturally mitigates against this within-unit correlation,
eliminating any sampling-based uncertainty. Design-based uncertainty arises from uncer-
tainty about what would have happened under different treatment assignments to any given
district. According to Abadie et al. (2023), this is the main source of uncertainty for studies
that use administrative data on the entire population, such as district-level GDP. They show
that standard inference tools such as clustered or Conley errors are too conservative in these
settings since they were developed to correct for sampling-based uncertainty.

In my setting, the fire exposure instrument leverages district-specific variation in treatment
(weighted upwind burning across origins), creating localized exogenous shocks that signifi-
cantly reduce residual spatial correlation. Despite the warnings of Abadie et al. (2023), I
tend toward the conservative by clustering standard errors at the region-year level, where
regions are groups of contiguous districts that share similarities in economic and geographic
fundamentals such as level of development, soil types, weather, and fire exposure etc.13

4.2 Effect of groundwater policy on the timing of fires

Before describing the construction of an instrument for air pollution using policy-driven
variation in the timing of fires, I show that this policy indeed shifted the monthly pattern
of fires. I utilize a difference-in-differences research design with fixed effects to conduct this
analysis. The outcome variables in each district-month-year period from 2002 to 2020 are
the count of fires and the total strength of these fires as measured by the fire radiative
power. These are aggregated to the district-level to reflect the administrative unit at which
state policy is implemented in India. I estimate a Poisson fixed effects model to recover the
coefficient of interest, assuming the standard exponential link function (Behrer 2019; Ranson
2014) for the count or measure of biomass burnt 𝐹𝑑𝑚𝑦 in district d, month m and year y.
The conditional expectation function given regressors X𝑑𝑚𝑦 is as follows

13 There are 530 districts and 96 regions in the sample, so that there are 5.5 districts on average in each
region. Each district had an area of approximately 100 sq km, on average.
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E[𝐹𝑑𝑚𝑦|X𝑑𝑚𝑦] = 𝑒𝑥𝑝( ∑
𝑚∈[1,12]

𝛿𝑚 𝐷𝑑𝑚𝑦 + 𝛼𝑑 + 𝜏𝑠𝑚 ∗ 𝑌𝑦) (3)

where the RHS inside the exponential function contains X𝑑𝑚𝑦. Since the laws came into
force at the state-level in 2009, the treatment indicator 𝐷𝑑𝑚𝑦 turns on for district-months
in Punjab and Haryana in and after 2009. District fixed effects 𝐷𝑑 control for unobserved
determinants of fires that do not change over time. Comparison of fires within state-by-
month cells (𝜏𝑠𝑦) flexibly controls for other within-state determinants of fire seasonality such
as different crop calendars, crop mixes etc. that do not change over time. Year fixed effect
𝑌𝑦 controls for any common trends across the country (such as the country-wide increase in
fires driven by the Mahatma Gandhi National Employment Guarantee Scheme or NREGS
documented by Behrer (2019)).

The count nature of the data and the nontrivial presence of zeros in the count data motivate
the use of a Poisson model. A log transform of 𝐹𝑑𝑚𝑦 would create bias in a linear model
estimation whereas an inverse hyperbolic sine transform makes the interpretation of the
elasticity slightly more complicated (Bellemare and Wichman 2020). Further, the Poisson
FE model only requires that the conditional expectation function be specified correctly for
consistent estimation of the parameters (Wooldridge 2010). It produces unbiased estimates
of the coefficients even if the fire data do not match the Poisson distributional assumptions
(Wooldridge 1999a, 1999b; Lin and Wooldridge 2019). This is not true of other models that
are used to handle count data such as negative binomial (Blackburn 2015). I estimate this
model using quasi-maximum likelihood method through the fixest package in R (Berge et
al. 2022).14

Taking log of (3) yields the following

𝑙𝑜𝑔(E[𝐹𝑑𝑚𝑦|X𝑑𝑚𝑦]) = ∑
𝑚 ∈ [1,12]

𝛿𝑚 𝐷𝑑𝑚𝑦 + 𝛼𝑑 + 𝜏𝑚𝑦 (4)

Therefore the coefficients of interest 𝛿𝑚 give the monthly elasticity of fire count to the policy.
As with any difference-in-differences design, the main identifying assumption for the 𝛿𝑚s is
that trends in monthly fires would be similar between treatment and control districts in the
absence of the policy change. I discuss this assumption in more details in the results section.
Standard errors are clustered two ways at the district and state-by-year level to account for

14The Poisson model can be used with non-integer data such as the measure of biomass burnt as well,
and the strengths of the Poisson over other model when the data have nontrivial presence of zeros also holds
(Wooldridge 2010)
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the district-level autocorrelation as well as implementation at the state-by-year level.

4.3 Constructing instrument for air quality using agricultural fires

Now I describe the construction of the fire exposure metric. This metric can be constructed
for every month of the year; but our instrument will be November fire exposure so as to
leverage the exogenous displacement of fires from October to November.

I capture the contribution of daily agricultural fires 𝐹𝑜𝑡 from 1x1 degree origin pixel 𝑜 on air
quality in destination pixel 𝑑 for month 𝑀 , as follows

𝜔𝑜𝑑,𝑀 = ( ∑
𝑡∈𝑀

𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 ∗ 𝐹𝑜𝑡
𝑑𝑖𝑠𝑡𝑜𝑑

) (5)

𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 is the daily average fraction of time that the wind at 𝑜 blows towards 𝑑 on
day 𝑡, whereas 𝑑𝑖𝑠𝑡𝑜𝑑 represents the distance between the centroids of 𝑜 and 𝑑. In order to
calculate 𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡, I start by assigning each hourly wind observation in 𝑜 on day 𝑡 into
one of 36 bins of 10 degree span each, based on the wind direction that hour (true north
is 0 degree as in the figure). I then construct the wind speed-weighted fraction of time the
wind was blowing in each of these 36 bins by aggregating hourly observations for day 𝑡.
𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 is then calculated by summing up wind fraction for the bins which are in the
direction of 𝑑 from 𝑜 as shown in figure 3.

I construct this instrument for various distances between origin and destination districts.
These are increased sequentially so that the distance that maximizes power in predicting
PM2.5 can be selected (Details in the next section of this estimation). Variation in the
instrument is driven by two factors: (i) changes in the temporal distribution of fires at
origin, and (ii) changes in the daily wind patterns at origin during the given month.

This instrument substantially differs from the wind-based instrument in Deryugina et al.
(2019). They utilize daily local variation in wind patterns that can change where pollution
comes from on that given day. I account for daily but upwind variation that is specifically
affecting the destination of interest, through the weighting of 𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡, penalized by
𝑑𝑖𝑠𝑡𝑜𝑑. This instrument allows me to explicitly leverage groundwater policy-driven variation
in air pollution.

A hypothesis from the scientific literature is that fires in the winter are much worse for
downwind PM due to meteorological conditions that favor longer suspension and entrapment
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of particulate matter in the lower atmosphere of downwind districts. I test this hypothesis
that fires in the winter are worse for PM2.5 in fire-exposed downwind districts by testing their
effect on annual PM2.5. Before discussing the results on the effect of PM2.5 on district GDP
in section 5.3, I discuss the results of this first stage in section 5.2, based on specifications
in equations 1 and 2.

5 Results

Table 1 summarizes the main variables used in the analysis.

5.1 Effect of groundwater laws on monthly fire patterns

To begin the results section, I refer to figure 2 that shows some growth in the fire count
and fire strength for November occurring just before the laws were passed in 2009, with a
stronger trend upwards after the passage of the law, before stabilizing by 2015 or so. This
suggests some anticipation effects in November, since the count of fires is trending up 2-3
years before the policy came into effect. These anticipation effects can be attributed to the
informal implementation of the policy before 2009 that is discussed in section 3.2.2. This
may have driven the shifts in fire patterns by slightly delaying the cultivation dates before
2009, with formal implementation inducing a larger shift. The lack of pre-trends on October
fires combined with a downward shift after 2009 supports this view. Therefore, the effect for
November my be an underestimate.15

Table 2 presents estimates of the causal effect of these laws on monthly fires, based on 3.
Columns 1 and 3 provide the mean number of fires and measure of biomass burnt in Punjab
and Haryana, before the passage of these laws. Those columns show peaks of fires during the
months of April, October and November. Fires in the latter two months are used to clear
the monsoon season rice residue, as described earlier. Fires in April are used to clear the
wheat crop residue after the harvest is done. The time pressure of needing to be rid of the
rice residue before wheat plantation that leads to the fires after monsoon rice harvest does
not arise after the wheat harvest. Yet we see substantial fire activity in April. This wheat
residue burning practice may have come about due to habit formation from setting fires to

15 Given the recent literature on the bias of TWFE, I plan to test for conditional parallel trends with
anticipation effects as well as the treatment effect of interest using the framework of Callaway and Sant’Anna
(2021). Their approach would work well in this setting since they rely on never-treated units to estimate
treatment effects. Therefore, I plan to utilize their R did package to estimate these effects in the future,
better accounting for anticipation effects.
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the rice residue. However, it is less troublesome for downwind pollution than are fires during
early winter, since meteorological conditions in April do not favor suspension of particulate
matter over the plains of North India.

Turning to the results in columns 1 and 3 of table 2 now, the main result is that the laws
increase the log of expected fire count in November by 0.43, and log of expected fire strength
by 0.54. Estimates for October are negative, providing evidence that the laws probably
succeeded in pushing rice cultivation by a few weeks to a month, and therefore peak fire
activity into November. Estimates for the other months except June and July are negative.
For the months from December to May, this would suggest a domino effect of the later rice
cultivation on other crop burning, since the entire crop calendar gets pushed back. The
spring season fire peak (from the wheat harvest) that used to happen in April and May
seems to shift slightly toward June and July, generating the positive estimates for those two
months. The negative estimates for August and September probably also come from the
enforced delay in rice plantation that would have affected some farmers who would plant
rice in early May otherwise. Finally, since there are very few fires to begin with in July, and
since July happens to be the rainy season, the shifting of the wheat fire season perhaps does
not have the same consequences for downwind pollution that the shifting of the rice season
does.

I present robustness results to alternative specifications and sample selection in table A1.
These include the following: OLS estimation rather than Poisson, including fires data from
2000 and 2001,16 and limiting the analysis to the sample for which GDP data is available.17

The results are consistent with table 2 in all these robustness checks, with only the fire
strength when limiting to the GDP sample becoming insignificant. This lack of power could
be due to the effects of policy not having had enough time to accumulate by 2013 or to
anticipation effects just before 2009. It should certainly not be taken as an indication that
the laws did not increase November fire activity.

5.2 Effect of November fires on annual downwind pollution

Before turning to the causal effect of annual PM2.5 on district GDP, I discuss the effect of fire
exposure on annual district PM2.5 levels. These results are equivalent to the first stage for the
2SLS results on GDP in the next section. As noted in the previous sections, fires in the winter
are particularly harmful for PM2.5 levels due to prevailing meteorological conditions over

16 The NASA Aqua satellite was launched in 2002 and drastically improved estimates of fire activity in
the FIRMS database

17 530 district between 2007-2013
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North India that favor slower dispersion of the particulate matter over space. Further, the
groundwater laws pushed agricultural fires in Punjab and Haryana toward November (early
Winter). Therefore, I focus on the effect of November fire exposure on PM2.5. Certain fires
can be stronger because more organic material is burnt, thereby producing higher amounts
of particulate matter. Therefore I use FRP to maximize signal in the instrument relative to
using count of fires.

I implement various distance cut-offs on the exposure measure: origin districts at a distance
larger than the cut-off are not used to construct FRP exposure for destination district. This is
done for two reasons. Firstly, while wind fraction times inverse-distance weighting captures
some of the pollution decay over distance, it could miss out on some important features
that govern decay, such as (i) rainfall along the path, which can cause the “wet deposition”
of particulate matter (Vallero 2014) (ii) meteorological conditions along the path such as
wind speed, temperature and relative humidity that could also alter the trajectory or cause
further deposition out of the atmosphere and (iii) geographical features such as mountains
along the way. For this reason, I hypothesize that larger cut-offs could add more noise to
the instrument. Therefore, I test which distance cut-off maximizes the within-R2, in order
to quantify the trade-off between signal and noise when increasing the distance cut-offs.

Table 3 shows results for cut-offs between 500 and 1000 km. In panel A, I present results from
a fixed effects model that includes a district-specific time trend, equivalent to the first stage
for equation 1. Panel B presents results from the first difference model with district fixed
effects in equation 2, therefore assuming a district-specific trend in growth of PM2.5. Both
these sets of results show strong and robust elasticities of PM2.5 to November FRP exposure,
peaking at a cut-off of 900 km (for both the coefficient size and within-R2). The main result
here is that a 1% increase in November FRP exposure increases annual PM2.5 levels by
0.029% (0.032%) with the FE (FD) model. It further illustrates the trade-off between signal
and noise when increasing distance to origin in constructing the instrument.18 Globally, 900
km maximizes within-R2 when explaining PM2.5 using November FRP exposure. I therefore
use that as the preferred distance to construct the instrument for PM2.5 in the next section.

In table 4, I confirm that higher FRP exposure only from fires during winter months affects
annual PM2.5 levels. This can be explained by unfavorable meteorological conditions during
winter that cause the particulate matter emissions from agricultural fires to stay suspended
for longer. However, fires in the winter months other than November are not affected by
the groundwater laws in Punjab and Haryana. Therefore, in order to quantify the effect of

18 Results for regressions with a 100 km cut-off to no distance cut-off at all show an increasing within R2
until 900 km when they start dropping of monotonically.
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increased November fires due to the laws later, I use only November-based FRP exposure
instrument in the analysis of the effect of PM2.5 on GDP in the next section.

Now, I address a concern that distance may be correlated with geographic determinants
of PM2.5 (and GDP later). Controlling for district fixed effects in these regressions helps
address that concern. But, distance also enters the instrument itself non-linearly; it may
be that the district fixed effect does not fully address the issue. Therefore, I construct
the instrument for each of these cut-offs by adding up wind fraction-weighted FRP from
qualifying origins without inverse-distance weighting. Thus distance directly does not enter
this instrument. Results for these regressions are presented in appendix table A2. They do
not suggest any cause for concern that distance entering the instrument non-linearly causes
any bias in the first stage.

5.3 Effect of PM2.5 on GDP

In this section, I turn to the impact of annual PM2.5 levels on annual GDP in Indian districts
in panel A of table 5. I present results with the fixed effects in columns 1-3, and with the first
difference specification in columns 4-5. Column 1 presents the OLS estimate controlling for
weather and including district and year fixed effects, but without district-specific linear time
trends. The coefficient is positive and strongly significant. The causal effect of higher PM2.5
on GDP should be negative, given the harmful effects on human health and productivity,
and potential effects on agriculture and machinery. The positive coefficient suggests that
this specification is not sufficient to address the concern about omitted variables that jointly
determine GDP and PM2.5, such as yearly demand shocks that cause higher GDP growth
due to certain districts being more trade-exposed, for example. Higher economic activity in
that year would increase PM2.5 levels in that district, and district fixed effects are insufficient
to capture the co-movement of these variables. The estimate is biased upwards since the
causal chain runs from GDP to PM2.5 in such cases. The sample period witnessed very
strong GDP growth in Indian districts, making this a particular concern in this setting.

Column 2 presents results with the addition of a district-specific linear time trend to reduce
this concern. The coefficient turns negative now, although it is imprecise, suggesting that
this time trend is able to reduce the upward bias from the reverse causality of GDP to
pollution. It also suggests the importance of including such time trends for non-stationary
GDP data when focusing on the effect of jointly determined variables such as air pollution, as
opposed to plausibly exogenous variables such as temperature deviations (Dell et al. 2012).

Before discussing the 2SLS estimates in columns 3 and 5, I focus on column 4 which presents
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the first difference estimate along with a district fixed effect, in effect assuming a district-
specific trend in the growth rate of GDP. The coefficient is -0.03 and significant at the 5%
level. The FD specification works much better with non-stationary data, and therefore this
coefficient is less biased and also more precisely measured than the fixed effects regression
with time trends in column 2.

Both these approaches solve some of the omitted variable problem plaguing estimation of the
effect of PM2.5 on district GDP. However, any joint residual variation from the trend still
causes upward bias in the estimates. I turn to the instrumental variable strategy to address
this residual concern. In column 3, I present 2SLS results from the fixed effects model with
district-specific time trends, instrumenting for PM2.5 using November FRP exposure with
a 900 km distance cut-off. The estimate is now much larger, although the IV also increases
standard errors as expected.

Panel B reproduces relevant first stage estimates from table 3. To test for weak instruments,
I also present two statistics below the first stage estimates. Stock and Yogo (2005) suggest
the use of the Cragg-Donald F-stat in a multivariate setting to test for weak instruments,
with a rule of thumb that a value less than 10 indicates a potentially weak instrument.
The Cragg-Donald F-stat is about 101.4; but this relies on iid assumptions for the errors.
Therefore, I also report the Kleibergen-Paap (KP) F-stat which is equivalent to the robust
F-stat with one endogenous regressor, as in this setting. The F-stat of 25.3 is comfortably
above 10, and therefore concerns about weak instruments do not arise here.19

Column 5 presents the 2SLS results from the first difference model. The point estimate is
slightly larger than column 3, and is estimated much more precisely. The KP F-stat is 26.4,
again comfortably larger than 10. I consider the specification in column 5 as the preferred
specification. These estimates suggest that increasing PM2.5 levels by 1% in a given year
has a large negative causal effect of 0.18% on district GDP.

6 Conclusion

This paper estimates the causal impact of air pollution on economic output using a nat-
ural experiment provided by groundwater conservation mandates in Punjab and Haryana.

19Andrews et al. (2019) recommend the use of the effective F-statistic (MOP F-stat) of Olea and Pflueger
(2013) in the case of a single endogenous regressor. This statistic is not easily calculated in any R or Stata
package that implements IV with panel data. However, Andrews et al. (2019) also note that with one single
endogenous regressor, the MOP F-stat is equivalent to the KP and robust F-stats. Therefore, the provided
F-stat is the correct one to test for weak instruments.
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To address endogeneity concerns inherent in measuring pollution’s impact on GDP—since
higher economic output typically generates more pollution—I exploit the exogenous shift in
agricultural fires induced by these mandates as an instrumental variable. Specifically, the
mandates shifted biomass burning from October to November, when meteorological condi-
tions significantly enhance pollution exposure for downwind districts.

I construct a novel measure of exposure to upwind November fires, demonstrating that it
substantially explains annual variations in PM2.5 concentrations across districts. I find that
1% higher upwind November fire exposure increase annual PM2.5 by 0.03%. Using first-
differenced models to control for district-specific trends and instrumenting pollution levels
with this policy-induced variation, I find that a 1% increase in annual PM2.5 concentrations
reduces district GDP by 0.18%.

There are also some limitations to this approach. First, the estimate relies on the exposure
instrument affecting downwind districts in accordance with its structure. While a chemical
transport model could do better in modeling this relationship, it is much more resource-
intensive to operate and may not do especially well for seasonal sources such as agricultural
fires. I also leave it to future research to further clarify the economic mechanisms behind
this relationship—whether the observed GDP reduction primarily occurs through declines
in industrial productivity, agricultural output, or labor health and productivity impacts.
Investigating firm adaptation strategies, such as relocating or adjusting production schedules,
will also help deepen our understanding of pollution’s economic costs.

In conclusion, this study contributes to the literature by providing a credible estimate of
pollution’s economic impact. By leveraging a novel instrument for air pollution that arises
due to exogenous policy changes, it also underscores the need for integrated environmental
and economic policy frameworks that consider cross-sectoral and spatial spillovers.
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Figure 1: Strength of fires in Indian districts (2010) ↩

Note: The states of Punjab and Haryana are outlined in light blue.
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Figure 2: Trends in fire count and fire radiative power (2002-2020) ↩
(a) Fire count

(b) Fire radiative power
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Figure 3: Construction of the fire exposure instrument ↩

(a) Average wind directions at origin

(b) Direction from origin to destination

Note: The pink lines on top are fractions of time during the day when the wind was blowing in that bin.
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Figure 4: Trend in fire exposure, PM and GDP (2007-2013) ↩

Note: Growth from the 2007 baseline value of each variable is plotted
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Table 1: Summary Statistics

Variable N Mean SD Min Max

Panel A: Monthly Fire Measures and Groundwater Law (2002-2020)

Count of fires 143640 5.340 32.720 0 1148
Total Fire Radiative Power (mw) 143640 102.75 670.34 0 45044
Groundwater Law Dummy 143640 0.065 0.247 0 1

Panel B: Exposure to Upwind November Fires (FRP-based) with distance cut-off (2007-2013)

Nov FRP exposure, cut-off = 500 3731 35.167 86.607 0.020 675.725
Nov FRP exposure, cut-off = 600 3731 38.924 87.728 0.053 675.902
Nov FRP exposure, cut-off = 700 3731 42.431 88.123 0.063 675.920
Nov FRP exposure, cut-off = 800 3731 45.904 88.126 0.085 675.985
Nov FRP exposure, cut-off = 900 3731 49.451 87.799 0.087 676.289
Nov FRP exposure, cut-off = 1000 3731 52.759 87.268 0.164 676.300

Panel C: Annual Particulate Matter and GDP (2007-2013)

Mean PM2.5 (micrograms/m3) 3731 62.517 27.678 17.828 147.946
GDP (Billions of Rupees, Constant 2004) 3731 81.301 164.07 2.414 3728

Panel D: Annual Weather (2007-2013)

Mean Temperature (∘C) 3731 25.011 3.767 -10.369 29.847
Total Rainfall (mm) 3731 2165.9 430.47 0 2809
Mean Relative Humidity (Ratio) 3731 0.640 0.081 0.388 0.852
Mean Surface Pressure (kilo-pascal) 3731 96.85 4.946 56.460 100.83
Mean Windspeed (m/s) 3731 1.437 0.598 0.329 3.831

Notes: All data is at the district level. The sample consists of 530 districts, except for Panel A which consists of
630 districts (out of 640 census 2011 districts). The reduction is due to ICRISAT GDP data only being available
between 2007-2013 for a subset of districts. ↩
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Table 2: Poisson Estimates of Impact of Groundwater Laws on Monthly Fires

Fire Count Fire Radative Power

Pre-2009 Pre-2009
Mean [SD] (1) Mean [SD] (2)

January 1.881 -0.749∗∗∗ 18.459 -0.746∗∗∗

[3.037] (0.137) [38.224] (0.154)
February 2.384 -0.659∗∗ 25.36 -0.809∗∗∗

[3.759] (0.278) [55.396] (0.218)
March 2.11 -0.529∗∗∗ 31.073 -0.771∗∗∗

[4.482] (0.145) [81.6] (0.154)
April 20.527 -1.09∗∗∗ 440.866 -0.789∗∗∗

[27.907] (0.260) [601.855] (0.266)
May 62.546 -0.430∗∗∗ 1330.916 -0.286∗

[72.912] (0.118) [1652.531] (0.157)
June 0.494 0.253 13.74 0.040

[1.306] (0.181) [55.281] (0.158)
July 0.149 0.542∗∗∗ 2.401 0.726∗∗∗

[0.524] (0.196) [9.039] (0.265)
August 0.36 -1.10∗∗∗ 6.031 -1.28∗∗∗

[1.077] (0.289) [19.759] (0.249)
September 4.625 -1.83∗∗∗ 58.319 -1.94∗∗∗

[10.988] (0.182) [143.641] (0.185)
October 192.287 -0.857∗∗∗ 2946.382 -0.855∗∗∗

[268.594] (0.118) [4473.063] (0.158)
November 49.846 0.429∗∗∗ 788.759 0.542∗∗∗

[130.006] (0.116) [2265.141] (0.159)
December 3.084 -0.600∗∗∗ 26.838 -0.526∗∗∗

[3.997] (0.162) [40.39] (0.175)

Observations 4018 140,372 4018 140,372
Pseudo R2 0.784 0.797
Years 2002-2018 2002-2018 2002-2018 2002-2018
Districts 41 630 41 630

continued
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State x Month FE X X
Year FE X X
District FE X X

Notes: Years 2002-2018. Columns 1 and 3 provide mean and
SD of fire count and fire strength before 2009 in Punjab and
Haryana. Columns labeled (1) and (2) provide Poisson esti-
mates. Standard errors are clustered at district and State x
Year. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 3: Impact of distance-weighted November fire exposure on annual PM2.5

Dependent Variable: log(PM)

(1) (2) (3) (4) (5) (6)

Panel A: Fixed Effects Model

log(Nov FRP Exposure) 0.011∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 0.027∗∗∗ 0.029∗∗∗ 0.028∗∗∗

(0.004) (0.004) (0.005) (0.006) (0.006) (0.006)

Observations 3,731 3,731 3,731 3,731 3,731 3,731
Within R2 0.539 0.542 0.546 0.550 0.551 0.549

Panel B: First Differences Model

log(Nov FRP Exposure) 0.008∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.031∗∗∗ 0.032∗∗∗ 0.031∗∗∗

(0.003) (0.003) (0.003) (0.006) (0.006) (0.006)

Observations 3,178 3,178 3,178 3,201 3,201 3,201
Within R2 0.171 0.172 0.173 0.197 0.197 0.193

Distance Cutoff [500 km] [600 km] [700 km] [800 km] [900 km] [1000 km]

Weather Controls X X X X X X
District and Year FE X X X X X X
District x Time Trend X X X X X X

Notes: Years 2007-2013. The sample is limited to districts for which GDP data is available. Each column
of Panel A and B provides estimates from the same regression specification but with a different distance
cut-off when constructing the FRP exposure instrument. Estimates in each panel are equivalent to the
first stage for columns 3 and 5 in table 5. Standard errors are clustered at district and Region x Year.
*p<0.1; **p<0.05; ***p<0.01. ↩
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Table 4: Impact of distance-weighted Monthly fire exposure on annual PM2.5

Dependent Variable: log(PM)

Exposure Month Jan Feb Mar Apr May Jun

Panel A: Estimates for January to June

log(Monthly FRP Exposure) 0.007 0.017∗∗∗ 0.011∗∗ -0.002 0.007 -0.006∗∗∗

(0.006) (0.006) (0.004) (0.006) (0.006) (0.002)
Observations 3,731 3,731 3,731 3,731 3,731 3,718
Within R2 0.535 0.540 0.537 0.534 0.535 0.537

Dependent Variable: log(PM)

Exposure Month Jul Aug Sep Oct Nov Dec

Panel B: Estimates for July to December

log(Monthly FRP Exposure) -0.004 -0.002 0.003 -0.010∗ 0.029∗∗∗ 0.012∗

(0.003) (0.003) (0.003) (0.005) (0.006) (0.007)
Observations 3,697 3,726 3,730 3,731 3,731 3,731
Within R2 0.534 0.534 0.535 0.536 0.551 0.536

Distance Cutoff [900 km] [900 km] [900] [900 km] [900 km] [900 km]

Weather Controls X X X X X X
District and Year FE X X X X X X
District x Time Trend X X X X X X

Notes: Years 2007-2013. The sample is limited to districts for which GDP data is available. Each single
column in Panel A and B displays estimates for the regression of annual PM2.5 on exposure to fires during
that month of the year only, using the same specification as in table 3. Standard errors are clustered at
district and Region x Year. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 5: Impact of Air Pollution (PM2.5) on GDP

Dependent Variable

log(GDP) Δ log(GDP)

(1) (2) (3) (4) (5)

Panel A: OLS and 2SLS Results

log(PM2.5) 0.147∗∗∗ -0.008 -0.159 -0.030∗∗ -0.179∗∗∗

(0.035) (0.016) (0.097) (0.014) (0.069)

Observations 3,731 3,731 3,731 3,201 3,201
R2 0.996 0.999 0.999 0.379 0.326

Weather Controls X X X X X
District and Year FE X X X X X
District x Time Trend X X

First Differences X X
2SLS Estimate X X

Panel B: First Stage Results

log(Nov FRP Exposure) 0.029∗∗∗ 0.032∗∗∗

(0.006) (0.006)
Cragg-Donald F-stat 101.4 116.5
Kleibergen-Paap F-stat 25.3 26.4

Notes: Years 2007-2013. The sample is limited to districts for which GDP data is
available. Panel A, columns 1-3, show estimates for both OLS and 2SLS regressions of
log GDP level on log PM2.5, starting without a time trend, then controlling for a time
trend and finally conducting 2SLS with time trend. Columns 4 of panel A shows an
OLS estimate using first differences while column 5 instruments for first difference of
log PM with first difference of log Nov Exposure (900 km cut-off). Standard errors are
clustered at district and Region x Year. *p<0.1; **p<0.05; ***p<0.01. ↩
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9 Appendix

Table A1: Impact of Groundwater Laws on Monthly Fires in Punjab and Haryana - Robust-
ness

Fire Count Fire Radative Power

(1) (2) (3) (4) (5) (6)

January -0.143∗∗ -0.747∗∗∗ -0.746∗∗∗ -0.164∗∗∗ -0.765∗∗∗ -0.918∗∗∗

(0.059) (0.133) (0.078) (0.054) (0.156) (0.080)
February -0.368∗∗∗ -0.737∗∗∗ -0.786∗∗∗ -0.407∗∗∗ -0.867∗∗∗ -0.949∗∗∗

(0.080) (0.252) (0.205) (0.077) (0.202) (0.229)
March -0.398∗∗∗ -0.668∗∗∗ -0.914∗∗∗ -0.500∗∗∗ -0.957∗∗∗ -1.27∗∗∗

(0.049) (0.142) (0.080) (0.057) (0.156) (0.137)
April -0.790∗∗∗ -1.06∗∗∗ 0.198 -0.735∗∗ -0.766∗∗∗ 0.028

(0.289) (0.254) (0.186) (0.335) (0.263) (0.183)
May -0.118∗ -0.534∗∗∗ -0.097 -0.072 -0.410∗∗∗ -0.086

(0.059) (0.118) (0.076) (0.072) (0.158) (0.080)
June -0.078 0.243 0.591∗∗∗ -0.233∗∗∗ 0.054 0.577∗∗∗

(0.052) (0.165) (0.170) (0.077) (0.157) (0.118)
July -0.152∗ 0.517∗∗∗ 1.20∗∗∗ -0.159∗∗∗ 0.698∗∗∗ 1.55∗∗∗

(0.076) (0.150) (0.401) (0.055) (0.220) (0.224)
August -0.495∗∗∗ -1.05∗∗∗ -0.035 -0.699∗∗∗ -1.25∗∗∗ 0.333∗

(0.082) (0.295) (0.070) (0.065) (0.254) (0.182)
September -1.09∗∗∗ -1.95∗∗∗ -1.42∗∗∗ -1.28∗∗∗ -2.07∗∗∗ -1.52∗∗∗

(0.258) (0.193) (0.144) (0.250) (0.195) (0.141)
October -0.223∗∗∗ -0.817∗∗∗ -0.380∗∗∗ -0.190∗ -0.821∗∗∗ -0.535∗∗∗

(0.074) (0.119) (0.070) (0.107) (0.159) (0.079)
November 1.05∗∗∗ 0.509∗∗∗ 0.238∗∗∗ 1.15∗∗ 0.613∗∗∗ 0.124

(0.382) (0.120) (0.081) (0.430) (0.161) (0.091)
December -0.370∗∗ -0.677∗∗∗ -0.323∗∗ -0.359∗ -0.640∗∗∗ -0.355∗∗∗

(0.154) (0.157) (0.132) (0.178) (0.166) (0.103)

Observations 56,082 149,257 43,904 56,082 149,257 43,904
Specification OLS Poisson Poisson OLS Poisson Poisson

continued
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Years 2002-2018 2000-2018 2007-2013 2002-2018 2000-2018 2007-2013
Districts 630 630 630 630 630 630

State x Month FE X X X X X X
Year FE X X X X X X
District FE X X X X X X

Notes: Provides robustness checks for table 2. Columns 1 and 4 conduct OLS es-
timation with log(fire count) and log(FRP) as the dependent variables. Columns 2
and 5 conduct the Poisson estimation with fires data from 2000 and 2001, when the
fires are less reliable. Columns 3 and 6 conduct Poisson estimation by restricting
sample to data from the 530 districts over 2007-2013 which have GDP data avail-
able. Standard errors are clustered at district and State x Year. *p<0.1; **p<0.05;
***p<0.01. ↩
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Table A2: Impact of November fire exposure without distance weighting on annual PM2.5

Dependent Variable: log(PM)

(1) (2) (3) (4) (5) (6)

Panel A: Fixed Effects Model

log(Nov FRP Exposure) 0.014∗∗∗ 0.021∗∗∗ 0.028∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.028∗∗∗

(0.004) (0.005) (0.006) (0.006) (0.006) (0.006)

Observations 3,731 3,731 3,731 3,731 3,731 3,731
Within R2 0.542 0.545 0.551 0.554 0.553 0.549

Panel B: First Differences Model

log(Nov FRP Exposure) 0.010∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.034∗∗∗ 0.033∗∗∗ 0.030∗∗∗

(0.003) (0.003) (0.003) (0.006) (0.006) (0.006)

Observations 3,178 3,178 3,178 3,201 3,201 3,201
Within R2 0.173 0.174 0.174 0.201 0.198 0.191

Distance Cutoff [500 km] [600 km] [700 km] [800 km] [900 km] [1000 km]

Weather Controls X X X X X X
District and Year FE X X X X X X
District x Time Trend X X X X X X

Notes: Years 2007-2013. Robustness to dropping distance from construction of exposure instrument in
table 3. The sample is limited to districts for which GDP data is available. Each column of Panel A
and B provides estimates from the same regression specification but with a different distance cut-off when
constructing the FRP exposure instrument. Standard errors are clustered at district and Region x Year.
*p<0.1; **p<0.05; ***p<0.01. ↩
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