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Abstract

Alarming rates of groundwater aquifer depletion in North India are linked to water-
intensive rice cultivation based on cheap electricity for water pumps. In this second-best
setting where optimal marginal pricing of groundwater is not possible, the northwestern
states of Punjab and Haryana with the highest groundwater depletion rates instead instituted
laws in 2009 intended to foster reliance on rain-fed irrigation by mandating a delay in rice
crop transplantation to coincide with monsoon arrival. At the same time, rice crop residue
burning in these two states contributes to high particulate matter levels over North India. In
this paper, I use satellite data on monthly fires and a difference-in-differences framework
to document that the groundwater laws shifted more than half of all agricultural fires into
early winter, when meteorological conditions favor longer suspension of particulate matter
over North India. I then quantify the consequences of this increased air pollution on Indian
GDP by estimating two further elasticities. First, I develop a novel instrument for PM2.5
that summarizes the exposure of a given location to all upwind fires, showing that 10%
higher district exposure to November fires increases annual PM2.5 by 0.3%, and that 4% of
within-district annual variation in PM2.5 can be explained by exposure to November fires.
Second, I estimate the effect of higher PM2.5 levels on GDP with data on Indian districts
between 2007-2013 using district and year fixed effects combined with a first differences
approach that is more efficient for non-stationary data, and with the fire exposure instrument
to tackle residual reverse causality. With this approach, I find estimates that a 10% increase
in PM2.5 reduces GDP by 1.8%, with a 95% interval of [-0.4%, -3.17%]. With these two
elasticities and the structure of the instrument, I estimate that the groundwater laws decrease
yearly Indian GDP by 0.125% due to the increase in November fire-driven air pollution.
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1 Introduction

The relationship between economic growth and the environment at various levels of development
is poorly understood. The Environmental Kuznets Curve hypothesized an inverted-U shape, with
economic growth worsening environmental outcomes at low levels of GDP per capita, but improv-
ing these outcomes at high levels (Grossman and Krueger 1995). Recent evidence has disputed this
characterization, instead focusing on uncovering the causal factors behind various environmental
outcomes at different stages of development1 (Jayachandran 2022; Stern 2017). This paper doc-
uments that the protection of groundwater resources in India substantially increased air pollution,
resulting in substantial cost to economic growth.

Aquifer depletion due to over-exploitation of groundwater is a well-documented and pressing
problem in India (World Bank 2021), Aquifer depletion has documented economic costs today
(Blakeslee et al. 2020) with adaptation to long-term water loss uncertain (Hagerty 2021). In order
to combat particularly acute groundwater depletion, the states of Punjab and Haryana in India
passed groundwater conservation laws that inadvertently increased concentrations of particulate
matter less than 2.5 microns in diameter (PM2.5) locally and across inter-state boundaries.2

India has the highest average PM2.5 concentrations in the world at 7 times the WHO standards
(Greenstone 2021). The economics literature documents wide-ranging impacts of this type of air
pollution, including on human health and mortality (Schlenker and Walker 2016; Deryugina et al.
2019) and labor productivity (Graff Zivin and Neidell 2012; Chang et al. 2019; Fu et al. 2021;
Adhvaryu et al. 2022; Borgschulte et al. 2022) among others. This paper quantifies the short-term
consequences for economic growth of increases in PM2.5 driven by the groundwater conservation
laws, and summarized in the Gross Domestic Product (GDP). Thus, decisions to protect local
groundwater resources in the interest of local long-term growth caused inter-state air pollution
externalities with wide-ranging and immediate economic costs.

The groundwater depletion problem in Punjab and Haryana has its roots in the worldwide Green
Revolution of the 1960s that allowed poor countries such as India to grow sufficient food and
avoid regular famine events (Pingali 2012). The set of institutions that took root during that period
in Punjab and Haryana led to the cultivation of water-intensive rice crop in these states that had
not cultivated any rice before. Farmers were incentivized to pump out groundwater to irrigate
paddy fields.3 By the early 2000s, the state governments had realized the problem; but rather than

1 For a sample of urban areas across the world, Jayachandran (2022) documents that greenhouse gas emissions keep
increasing with GDP per capita, lead pollution displays the EKC inverted-U pattern, air pollution (particulate matter
concentrations) displays a linear and correlation while Ozone does not display any correlation at all.

2 Other pollutants such as Ozone and PM10 may also be correlated with increases in PM2.5.
3 Rice is synonymous with paddy, with interchangeable references to paddy or rice fields.
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incentivizing a shift away from the rice crop or instituting a marginal price for groundwater4, these
states decided to force farmers to push back the dates of rice transplantation5 frommid-May to mid-
June, hoping that the arrival of the monsoon by late June would reduce dependence on groundwater
to grow rice.

Even before these groundwater conservation laws were passed in 2009, farmers in Punjab and
Haryana would set fire to their fields after the rice harvest in October in order to prepare the same
fields for planting the staple wheat crop. These fires clear out leftover residue after rice harvest
that come in the way of planting wheat seeds, and have become popular as the cheapest method
to get rid of this residue. Although agricultural fires are nominally illegal, enforcement is rare,
with an average expected fine in Haryana of 0.75 USD while the average marginal cost to clear
the field without fires is 50 USD (Behrer 2019; Lohan et al. 2018). By forcing a shift in the
transplantation dates to early June in order to conserve groundwater, these states also shifted rice
cultivation dates from October into November. Since any delays in planting of wheat crops can
reduce yields (McDonald et al. 2022), farmers had further incentives to utilize fires to get rid of the
rice residue after a later harvest due to the laws. These factors had the unintended consequence of
shifting the peak of agricultural fires from October into November, when the onset of winter brings
lower wind speeds and temperatures that slow the dispersion of particulate matter (Vallero 2014).

I utilize a two-way fixed effects design with information on the timing of the groundwater laws to
document that the laws increased November fire count by 54% and the measure of biomass burnt by
72% in districts of Punjab and Haryana. Small anticipation effects imply that these may be slight
underestimates. At the same time, October fire count and measure of biomass burnt decreased
by 58% and 57% respectively. Since winter fire activity is predominantly concentrated in these
two months, these results document the shift in monthly fire patterns toward early winter. Next, I
develop a novel method to capture the effect of the increase in November fire activity on annual
PM2.5 levels. November fire exposure strongly affects annual PM2.5 levels across India, with
changes in fire exposure explaining 4.2% of annual deviations in within-district PM2.5, compared
to 16% explained by local weather.

Next, I analyze the effect of PM2.5 levels on district GDP using newly available panel data for 530
Indian districts between 2007 and 2013. In order to account for the non-stationary nature of the
GDP data6, I utilize district-specific time trends as well as a first differences approach. The latter
performs better with strongly non-stationary data series and is commonly used in macroeconomic

4 Themarginal price of groundwater extraction continues to be close to zero, since electricity for pumps is subsidized
with flat tariffs rather than marginal pricing, and any outstanding farm electricity bills are rarely paid back to state
distribution companies.

5 This process of moving seedlings grown in nurseries into fields reduces weed removal and produces higher yields.
More details at http://www.knowledgebank.irri.org/training/fact-sheets/crop-establishment/manual-transplanting

6 Average yearly district GDP growth rate in this period was 7%.
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analysis of GDP data (Wooldridge 2010). Identification of the causal effect of PM2.5 on district
GDP relies on yearly deviations in PM2.5 being plausibly exogenous, controlling for year and
district fixed effects as well as time trends. However, causality may yet run from GDP to PM2.5,
with larger yearly deviations in pollution systematically being a result of higher economic activity
in that district in the given year. To tackle this endogeneity concern, I instrument for PM2.5 using
the novel variable linking all upwind fires to local PM2.5 concentrations. With this instrument, I
show that a 1% increase in PM2.5 levels reduces GDP by 0.18% in Indian districts.

With these causal estimates in hand, I calculate the effect of the increase in November fires due to
the groundwater laws on net GDP in India. Districts that are closer to and downwind of districts
in Punjab and Haryana see a larger increase in particulate matter concentrations, and therefore
reductions in GDP. I calculate an estimate of yearly net GDP losses using the three estimated elas-
ticities: the increase in November fire strength due to the laws, the increase in downwind PM2.5
due to higher November fire exposure, and the reduction in GDP from an increase in PM2.5 levels.
This leads to an estimated yearly loss of 0.125% of national GDP due to the groundwater laws. For
comparison, the share of yearly expenditure as a percentage of GDP on the National Rural Employ-
ment Guarantee Scheme (NREGS), a flagship welfare program, is about 0.25%. The loss figure of
0.125% is also an underestimate of the overall economic costs associated with the increased pllu-
tion due to these laws, since it does not account for increased infant and old-age mortality, as well
unaccounted expenditures on health, lost schooling years etc. that are not monetized into GDP.

This paper contributes to the literature on how institutions affect environmental outcomes in de-
veloping countries. More stringent regulation (Burgess et al. 2019), use of technology (Assunção
et al. 2022) and higher resource allocation to monitoring and enforcement (Duflo et al. 2018) can
improve environmental outcomes in developing countries. Weak state capacity impedes the im-
plementation of regulations on the books that prohibit the use of fires in agriculture in Punjab and
Haryana, leading to large economic costs.

Another explanation may be that while the groundwater externality is localized to the two states,
the air pollution externality is an inter-state phenomenon. Lipscomb and Mobarak (2017) show
that decentralization of regulatory authority in Brazilian municipalities leads to larger water pollu-
tion externalities across border. Kahn et al. (2015) document that providing promotion incentives
to reduce some water pollutants to local officials reduces their externality on downstream neigh-
bors. While the states of Punjab and Haryana are able to successfully implement one set of laws
intended to conserve local groundwater, they are unable (or unwilling) to implement regulations
on fires, which cause downwind externalities on top of local ones. This result suggests that de-
signing regulatory institutions for environmental protection at the appropriate level is important in
determining the outcomes of regulation.
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Finally, this paper also relates to the literature on second-best institutions in developing coun-
tries. Rodrik (2008) argue that institutional design in developing countries with multiple distor-
tions should not insist on the first-best, since the desired outcome can be achieved at lower cost
through second-best practices. The textbook, first-best solution to the groundwater externality in
Punjab and Haryana is marginal pricing of groundwater. But this is very unlikely to occur given
the political power of farmer lobbies in these two states. Unfortunately, the second-best solution to
utilize the monsoon rains for rice cultivation backfired by exacerbating the air pollution externality.

The rest of the paper is structured as follows. Section 2 describes the data while section 3 presents
the context and motivates the QSE model by estimating the extent of pollution externalities from
agricultural fires. Section 4 presents the model of general equilibrium while section 5 describes
the estimation of the parameters governing equilibrium. Section 6 conducts counterfactuals and
section 7 concludes.

2 Background

India is the largest user of groundwater in the world; but with almost 20% of the world’s population,
it only has about 4% of the world’s freshwater resources (World Bank 2021). The resulting overuse
of groundwater to meet population needs has caused rapid aquifer depletion and led to an urgent
environmental crisis, particularly affecting the alluvial plains of North-Western India. This section
first discusses the factors behind this depletion in the North-Western states of Punjab and Haryana,
leading to the passage of a set of groundwater conservation laws in 2009. I then discuss how these
laws unintentionally pushed agricultural fires into early winter, when their impact on air pollution
is exacerbated due to meteorological conditions.

2.0.1 Groundwater conservation laws in Punjab and Haryana

Until the advent of the so-called Green Revolution of the 1960s that raised agricultural productivity
dramatically across India and much of the poor world (Pingali 2012), North-Western India was a
primarily wheat-growing region with little rice consumption or production locally. One of the
institutional innovations of the Green Revolution in these states was the provision of large subsidies
for tubewells and borewells. Individual farmers could now access shallow groundwater to irrigate
fields even if they did not have access to the large, pre-existing canals systems built by the colonial
British empire. Over time, modern pumps running on electricity were combined with practically
zero tariffs to farmers so that they could irrigate their fields at minimum cost.
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This newfound access to groundwater allowed farmers to diversify their crop portfolio by allow-
ing the cultivation of the highly water-intensive rice crop during the “Kharif” or monsoon season
(June-October). The wheat crop is cultivated during the “Rabi” or winter season, when the lower
temperatures and plenty of sunshine provide perfect weather conditions for growth (Kataki et al.
2001); planting happens in early winter and harvest in early spring.

The state of Punjab contributed less than 1% of India’s rice in 1961; by the late 1990s this figure
was up to 10%; absolute rice output across India rose from 11 million tonnes to 75 million tonnes
in this period, underlining the massive increase in rice cultivation in Punjab (Subramanian 2017).
Similar trends in rice cultivation were seen in Haryana. This fundamental change in the cropping
patterns of the region exacerbated the depletion of groundwater resources, since the paddy fields
were flooded primarily using groundwater, pumped out before the annual monsoon reached Punjab
and Haryana. Taken together, the unregulated exploitation of groundwater had led to an acute water
crisis by the early 2000s, although concerns about excessive extraction almost 1.5 times the natural
recharge rate had been expressed by agricultural scientists and government committees going back
to the 1980s (Singh 2009).

Despite the alarm expressed by various stakeholders, the state governments largely ignored the
problem until the early 2000s. When asked about these concerns, the then-Chief minister of Pun-
jab, Prakash Singh Badal, is quoted in the media as saying, ”The problem is not as acute as is
being projected. It is a theoretical evaluation and there is no truth in it” (Down To Earth 1999).
The political economy of both states, but particularly of Punjab, centers around medium and large
sized farmers who receive a range of state subsidies that incentivizes rice and wheat cultivation.
Apart from the Green Revolution era technological subsidies for higher-yielding seeds, fertilizers
and pesticides, tubewells and electric pumps, provision of cheap electricity is also important in
explaining groundwater levels (Ryan and Sudarshan 2020). Often these dues are not paid to state
distribution companies at all, resulting in lack of investment in the power grid (World Bank 2018).
But, most importantly, the procurement of wheat and rice crop by the state governments of Punjab
and Haryana at so-called Minimum Support Prices that distort market signals (Parikh et al. 2003)
precludes farmers from switching to other crops with higher price and yield risks.

The practice of transplantation of rice before mid-June was thought to be particularly cause too
much reliance on groundwater (Singh 2009). In response, sections of the state bureaucracy had
made efforts starting in the early 2000s to shift the transplantation of rice closer to the monsoon,
since this was thought to ease the strain on groundwater use. The two governments took executive
action through ordinances in 20087 to extend the practice of delaying rice transplantation state-
wide. Given the generally favorable response to this ordinance, the legislatures of Punjab and

7 These do not have the same power in Indian law as a statute and cannot be renewed beyond a few months.

6



Haryana separately ratified the Preservation of Subsoil Water Acts of 2009 (“laws” from now on)
in an effort to conserve groundwater.

These laws prohibited early transplanting of rice before the monsoon in an attempt to reduce
groundwater usage for irrigation. Much of the rice transplantation would occur in the peak of
summer during May when evapotranspiration (water loss from plants as well as soils and water
bodies) is high. These laws specified June 10 as the earliest transplantation date, and it was shifted
further to June 20 later8. When planting rice in May, farmers were solely dependent on groundwa-
ter reserves for rice growth; moving transplantation to June allowed rice growth to depend more
on monsoon rainfall. This was expected to lead to a lower rate of groundwater extraction.9

2.0.2 Increase in agricultural fires due to shifting of rice crop harvest

The primary use of fires in Indian agriculture today is to clear the field of leftover residue from
harvesting a crop, before sowing and planting the next crop (Shyamsundar et al. 2019); this differs
from slash-and-burn agriculture that is practiced in parts of Africa and Indonesia (Andini et al.
2018). Figure 1 shows that agricultural fires are concentrated in the states of Punjab and Haryana,
which are also characterized by a Rice-Wheat crop system.

In the Rice-Wheat system of Punjab and Haryana, fires are used to clear rice residue before the
planting of the wheat crop on the same land, since rice residue comes in the way of planting wheat.
This practice dates back at least to the 1990s. The earliest observations of fires from the NASA
FIRMS database (described in the next section) starting in 2002 clearly demonstrate that North-
western India already had a disproportionate share of fires in Indian agriculture.

The delay in rice transplantation due to the laws also pushed back harvest dates. The resulting delay
in rice harvest from mid October to late October and November meant that farmers had fewer days
between rice harvest and wheat plantation. Any delays in wheat plantation beyond the first two
weeks of winter reduces yields substantially (McDonald et al. 2022). Therefore, the law had the
unintended consequence of increasing the intensity of agricultural fires in November, when slower
winds and lower temperatures tend to worsen downwind air quality.

8The Indian Met Department (IMD) sets out July 1 as the expected date of onset of the monsoon in North-Western
India. Details here

9 Groundwater recharge is typically a slow-moving process that takes place over a longer period than the period of
study here. I plan to conduct an assessment of the change in groundwater levels to the present day due the policy in
the future
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3 Data and Measurement

3.0.1 Agricultural fires

The burning of residue from crop harvest is referred to as agricultural fires. To analyse the im-
pact of the groundwater conservation laws on the monthly pattern of fires, the ideal data would
include precise location of each individual fire set for the purpose of burning crop residue. But
there are no representative ground-level observations of this phenomenon. To overcome this chal-
lenge, I utilize the Fire Information for Resource Management System (FIRMS) product from the
National Aeronautics and Space Administration (NASA) agency of the United States that is widely
used to identify terrestrial fires. This product provides information on daily fires detected at lati-
tude/longitude level across the world and has been recently used to analyze agricultural fires in the
economics literature (Behrer 2019).

FIRMS provides a few related products: Near-Real Time (NRT) fires using the MODIS instrument
aboard Terra and Aqua satellites, standard product from the same instrument but with a 2-3 month
lag and another NRT product using the VIIRS instrument from the Suomi-NPP and NOAA-20
satellites. The main difference between the first two and the third is the resolution of the data.
MODIS products are at 1 km resolution and are available from 2000 (more reliable from 2002
when Aqua satellite was launched) whereas VIIRS products are at 375 m but only available from
2012. The primary analysis utilizes the MODIS standard product which differs from the NRT data
in that corrections are made to the imprecise location of the Aqua satellite in the NRT data. Imagery
data from Aqua and Terra satellites is available at least four times daily for each pixel on Earth and
is processed using a NASA algorithm isolate a ground-level fire signal from other signals such as
solar flares.

I combine this data with information on land use from the European Space Agency Climate Change
Initiative’s land cover map (version 2.07).10 This allows the subset of fires that is found on agri-
cultural land to be separated from natural forest fires since this paper is interested in agricultural
fires. I aggregate and resample the land cover data which is at a resolution of 300 m to the fire data
grid (at 1 km resolution), with an indicator for agricultural land use as the main output from this
process. All fires are then masked based on this indicator variable to find the subset of agricultural
fires.

10 Data is available at https://cds.climate.copernicus.eu/cdsapp/#!/dataset/satellite-land-cover
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3.0.2 Air quality

An important consideration for air quality data is complete geographical coverage. Whereas
ground-level monitoring station coverage in India is extremely sparse (Greenstone and Hanna
2014), satellite imagery-based products provide complete coverage. Secondly, ground-level
observations may be susceptible to manipulation (Greenstone et al. 2022; Ghanem and Zhang
2014). Therefore, the main source of data on air quality is Hammer et al. (2020), a gridded
reanalysis product of global surface PM2.5 concentrations at a resolution of 0.01∘ that should
be much less susceptible to such manipulation. This product combines satellite imagery data
on Aerosol Optical Depth with state-of-the-art chemical transport models, and calibrates the
output to global ground-based observations. It is easy to aggregate the gridded product to the
necessary resolution for analysis at pixel, city or district level. Forthcoming sections will detail
the aggregation procedure for each analysis.

3.0.3 GDP data

To estimate the impacts of PM2.5 onGDP,wewould like data at themost granular sub-national level
possible. While satellite-based data on PM2.5 levels are available at a 1x1 km grid, output data are
rarely available at such sub-national scales. Fortunately, GDP measures at the district level in India
between 2007-2013 have recently been compiled by the International Crops Research Institute for
the Semi-Arid Tropics (ICRISAT) in their District Level Database (DLD).11 I clean and combine
these data with other district-level data using district identifiers from ICRISAT and the Census of
India, 2011.

3.0.4 Meteorological data

Hourly wind data are used to construct exposure to agricultural fires for every origin-destination
pixel pair. Details of the methodology follow in the section 3 below. The source of these wind data
is the European Center for Medium Range Weather Forecasting (ECMWF) ERA5 family of global
gridded reanalysis datasets.12. Reanalysis data combine ground-level observations and satellite
data with Chemical Transport Models that represent physical and chemical processes in the atmo-
sphere to produce reliable and complete coverage for the world. Since ground-level observations
are particularly sparse in developing countries these reanalysis data are widely used in the literature
on climate and air pollution in Economics (Auffhammer et al. 2013) Hourly wind speed and direc-
tion data are taken from the ERA5-Land hourly dataset which is available at a resolution of 0.1∘.

11 http://data.icrisat.org/dld/src/crops.html
12 Data available at https://cds.climate.copernicus.eu

9

http://data.icrisat.org/dld/src/crops.html
https://cds.climate.copernicus.eu


These are combined with daily agricultural fires at the pixel level to construct the fire exposure
variable. Apart from being used to quantify the contribution of distant residue burning on local air
pollution, fire exposure also is an instrument for pollution at the city and district level in estimation
of certain elasticities. Finally, I also construct temporal averages for weather variables including
rainfall, temperature and relative humidity from this dataset to be used as controls in the regression
analysis.

3.0.5 Constructing instrument for air quality using agricultural fires

Since the laws push fires in Punjab and Haryana into November when there used to be very few
fires earlier, I only consider the month of November in constructing this instrument. I capture
the contribution of daily agricultural fires 𝐹𝑜𝑡 from 1x1 degree origin pixel 𝑜 on air quality in
destination pixel 𝑑, at a distance of 𝑑𝑖𝑠𝑡𝑜𝑑

13, in the month of November, as follows

𝜔𝑜𝑑 = ( ∑
𝑡∈𝑁𝑜𝑣

𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 ∗ 𝐹𝑜𝑡
𝑑𝑖𝑠𝑡𝑜𝑑

) (1)

𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 is the daily average fraction of time that the wind at 𝑜 blows towards 𝑑 on day 𝑡. In
order to calculate 𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡, I start by assigning each hourly wind observation in 𝑜 on day 𝑡
into one of 36 bins of 10 degree span each, based on the wind direction that hour (true north is 0
degree as in the figure). I then construct the wind speed-weighted fraction of time the wind was
blowing in each of these 36 bins by aggregating hourly observations for day 𝑡. 𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 is
then calculated by summing up wind fraction for the bins which are in the direction of 𝑑 from 𝑜 as
shown in figure 3.

I construct this instrument for various distances between origin and destination districts.14 These
are increased sequentially so that the distance that maximizes power in predicting PM2.5 can be
selected (Details in the next section of this estimation). Yearly variation in the instrument is driven
by two factors: (i) changes in the temporal distribution of fires at origin and (ii) changes in the daily
wind patterns at origin during November.

Table 1 summarizes the main variables used in the analysis.
13The distance elasticity is assumed to be -1 but will be estimated using NLS
14Distances are calculated using district centroids.
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4 Research Design

4.0.1 Effect of policy on local fires

I utilize a difference-in-differences research design with fixed effects to test how the groundwater
conservation laws shifted the monthly pattern of fires. The outcome variables in each district-
month-year period from 2002 to 2020 are the count of fires and the total strength of these fires
as measured by the fire radiative power. These are aggregated to the district-level to reflect the
administrative unit at which state policy is implemented in India. I estimate a Poisson fixed effects
model to recover the coefficient of interest, assuming the standard exponential link function (Behrer
2019; Ranson 2014) for the count or measure of biomass burnt 𝐹𝑑𝑚𝑦 in district d, month m and
year y. The conditional expectation function given regressors X𝑑𝑚𝑦 is as follows

E[𝐹𝑑𝑚𝑦|X𝑑𝑚𝑦] = 𝑒𝑥𝑝( ∑
𝑚∈[1,12]

𝛿𝑚 𝐷𝑑𝑚𝑦 + 𝛼𝑑 + 𝜏𝑠𝑚 ∗ 𝑌𝑦) (2)

where the RHS inside the exponential function contains X𝑑𝑚𝑦. Since the laws came into force at
the state-level in 2009, the treatment indicator 𝐷𝑑𝑚𝑦 turns on for district-months in Punjab and
Haryana in and after 2009. District fixed effects 𝐷𝑑 control for unobserved determinants of fires
that do not change over time. Comparison of fires within state-by-month cells (𝜏𝑠𝑦) flexibly controls
for other within-state determinants of fire seasonality such as different crop calendars, crop mixes
etc. that do not change over time. Year fixed effect 𝑌𝑦 controls for any common trends across
the country (such as the country-wide increase in fires driven by the Mahatma Gandhi National
Employment Guarantee Scheme or NREGS documented by Behrer (2019)).

The count nature of the data and the nontrivial presence of zeros in the count data motivate the
use of a Poisson model. A log transform of 𝐹𝑑𝑚𝑦 would create bias in a linear model estimation
whereas an inverse hyperbolic sine transformmakes the interpretation of the elasticity slightly more
complicated (Bellemare and Wichman 2020). Further, the Poisson FE model only requires that the
conditional expectation function be specified correctly for consistent estimation of the parameters
(Wooldridge 2010). It produces unbiased estimates of the coefficients even if the fire data do
not match the Poisson distributional assumptions (Wooldridge 1999a, 1999b; Lin and Wooldridge
2019). This is not true of other models that are used to handle count data such as negative binomial
(Blackburn 2015). I estimate this model using quasi-maximum likelihoodmethod through the fixest
package in R (Berge et al. 2022).15

15The Poisson model can be used with non-integer data such as the measure of biomass burnt as well, and the
strengths of the Poisson over other model when the data have nontrivial presence of zeros also holds (Wooldridge
2010)
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Taking log of (2) yields the following

𝑙𝑜𝑔(E[𝐹𝑑𝑚𝑦|X𝑑𝑚𝑦]) = ∑
𝑚 ∈ [1,12]

𝛿𝑚 𝐷𝑑𝑚𝑦 + 𝛼𝑑 + 𝜏𝑚𝑦 (3)

Therefore the coefficients of interest 𝛿𝑚 give the monthly elasticity of fire count to the policy.
As with any difference-in-differences design, the main identifying assumption for the 𝛿𝑚s is that
trends in monthly fires would be similar between treatment and control districts in the absence
of the policy change. I discuss this assumption in more details in the results section. Standard
errors are clustered two ways at the district and state-by-year level to account for the district-level
autocorrelation as well as implementation at the state-by-year level.

4.0.2 Effect of PM2.5 on GDP

This section describes the estimation of the causal impact of higher PM2.5 levels on district GDP
in India. I build up to an instrumental variables strategy for PM2.5 that allows the quantification
of impact of the groundwater laws on downwind GDP. Before describing this IV strategy, equation
(4) presents an OLS regression model of the effect of PM2.5 on district GDP.

𝑙𝑜𝑔(𝐺𝐷𝑃𝑑𝑦) = 𝛽 𝑙𝑜𝑔(𝑃𝑀𝑑𝑦) + 𝛾 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + 𝑔𝑑 ∗ 𝑡 + 𝛼𝑑 + 𝑌𝑦 + 𝜖𝑑𝑦 (4)

𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 = {𝑇 𝑒𝑚𝑝𝑑𝑦, 𝑇 𝑒𝑚𝑝_𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑑𝑦, 𝑅𝑎𝑖𝑛𝑑𝑦, 𝑅𝑎𝑖𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑑𝑦,
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑑𝑦, 𝑆𝑢𝑟𝑓𝑎𝑐𝑒_𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑑𝑦, 𝑊𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑑𝑦}

The quantity of interest 𝛽 is the percentage reduction in GDP for a 1% increase in PM2.5 levels.
This model contains district and year fixed effects 𝐷𝑑 and 𝑌𝑦 respectively, which control for fixed
factors that raise productivity or increase pollution as well as account for any common macroeco-
nomic shocks. Weather variables such as temperature, rainfall, humidity and wind speed are known
to affect PM2.5 (Dechezleprêtre et al. 2019; Bondy et al. 2020). Therefore, I control for yearly
average weather that could determine the level of pollution from given emissions.

The main residual concern with identification of 𝛽 in this model is that deviations of GDP and PM
can be jointly determined. Higher economic activity in a given year can itself cause an increase in
PM that year by increasing emissions. At the same time, higher deviation in PM can stunt GDP
growth that year through channels such as increased worker morbidity and lower labor productivity

I adopt three approaches to tackle this endogeneity issue. Figure 4 shows that GDP exhibits strong
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growth in this period and therefore is not stationary; between 2007-2013, average Indian GDP
growth rate was 7%. First, I fit a district-specific linear time trend 𝑔𝑑 ∗ 𝑡 in GDP. The time trend
will capture district-specific factors that cause constant GDP growth, leaving only deviations from
the trend line in the outcome. This approach can also help reduce omitted variables bias (OVB)
that jointly determines both GDP and PM2.5 (eg. demand shocks that affect certain districts). Such
OVB can cause the causal chain to run from GDP to PM2.5, leading to reverse causality that biases
the estimate upwards, since an increase in economic activity increases PM2.5 levels.

Secondly, I also conduct analysis using first differences (FD) that is the preferred over fixed effects
to deal with non-stationary, autocorrelated data series in both outcome and explanatory variables.
Further, an FD specification that also includes a fixed effect allows for a district-specific linear
growth rate 𝑔𝑑 in the outcome. The FD approach is commonly used in the macroeconomic litera-
ture to deal with serial correlation in aggregated GDP data. Equation (5) specifies the regression
framework for the FD model.

Δ𝑙𝑜𝑔(𝐺𝐷𝑃𝑑𝑦) = 𝛽 Δ𝑙𝑜𝑔(𝑃𝑀𝑑𝑦) + 𝛾 Δ𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + 𝑔𝑑 + Δ𝑌𝑦 + Δ𝜖𝑑𝑦 (5)

This specification examines how the growth rate of PM2.5 affects the growth rate of GDP, con-
trolling for year-on-year changes in weather and common macroeconomic conditions. The district
fixed effect 𝑔𝑑 captures the constant growth rate of GDP in these districts. But even with the FD de-
sign, there may still be some OVB in the leftover variation, leading to reverse causality that biases
the results upwards.

The third approach utilizes the fact that the stock of pollution in a district is partially due to sources
outside the district, notably agricultural fires in this instance. Using the instrument for PM2.5 de-
fined in the previous section with both the panel and FD specifications allows us to tackle the
reverse causality challenge. Fires in the winter are much worse for downwind PM due to meteo-
rological conditions that favor longer suspension and entrapment of particulate matter in the lower
atmosphere of downwind districts. I also construct the same instrument with other months sepa-
rately and together for the whole year, and test the hypothesis that fires in the winter are worse for
PM2.5 in fire-exposed downwind districts. Before discussing the results on the effect of PM2.5
on district GDP in section 5.0.3, I discuss the results of this first stage in section 5.0.2, based on
specifications in equations 4 and 5.

Inference would ideally be conducted using Conley spatial standard errors with arbitrary autocor-
relation at district level, given the spatial autocorrelation in PM2.5 and GDP levels. However, I
am unable to implement these standard errors for a panel data model with instrumental variables.16

16 The R package lfe provides the command felm that implements Conley SEs with panel data; however it does not
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Instead I cluster standard errors at the region-year level, where regions are groups of contiguous
districts that share similarities in economic and geographic fundamentals such as level of devel-
opment, soil types, weather etc.17 In this case, the dependence of PM2.5 is fundamentally spatial,
and not administrative. In order to test whether clustering at the level of the region is appropriate, I
plan to conduct inference using a wild cluster bootstrap later. I also plan to write code to calculate
Conley standard errors in a panel IV setting.

5 Results

5.0.1 Effect of groundwater laws on monthly fire patterns

To begin the results section, I refer to figure 2 that shows some growth in the fire count and fire
strength for November occurring just before the laws were passed in 2009, with a stronger trend
upwards after the passage of the law, before stabilizing by 2015 or so. This suggests some antici-
pation effects in November, since the count of fires is trending up 2-3 years before the policy came
into effect. These anticipation effects can be attributed to the informal implementation of the policy
before 2009 that is discussed in section 2.0.1. This may have driven the shifts in fire patterns by
slightly delaying the cultivation dates before 2009, with formal implementation inducing a larger
shift. The lack of pre-trends on October fires combined with a downward shift after 2009 supports
this view. Therefore, the effect for November my be an underestimate.18

Table 2 presents estimates of the causal effect of these laws on monthly fires, based on 2. Columns
1 and 3 provide the mean number of fires and measure of biomass burnt in Punjab and Haryana,
before the passage of these laws. Those columns show peaks of fires during the months of April,
October and November. Fires in the latter two months are used to clear the monsoon season rice
residue, as described earlier. Fires in April are used to clear the wheat crop residue after the harvest
is done. The time pressure of needing to be rid of the rice residue before wheat plantation that
leads to the fires after monsoon rice harvest does not arise after the wheat harvest. Yet we see
substantial fire activity in April. This wheat residue burning practice may have come about due to
habit formation from setting fires to the rice residue. However, it is less troublesome for downwind

produce these SEs with panel IV estimation.
17 There are 530 districts and 96 regions in the sample, so that there are 5.5 districts on average in each region. Each

district had an area of approximately 100 sq km, on average.
18 Given the recent literature on the bias of TWFE, I plan to test for conditional parallel trendswith anticipation effects

as well as the treatment effect of interest using the framework of Callaway and Sant’Anna (2021). Their approachwould
work well in this setting since they rely on never-treated units to estimate treatment effects. Therefore, I plan to utilize
their R did package to estimate these effects in the future, better accounting for anticipation effects.
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pollution than are fires during early winter, since meteorological conditions in April do not favor
suspension of particulate matter over the plains of North India.

Turning to the results in columns 1 and 3 of table 2 now, the main result is that the laws increase the
log of expected fire count in November by 0.43, and log of expected fire strength by 0.54. Estimates
for October are negative, providing evidence that the laws probably succeeded in pushing rice
cultivation by a few weeks to a month, and therefore peak fire activity into November. Estimates
for the other months except June and July are negative. For the months from December to May, this
would suggest a domino effect of the later rice cultivation on other crop burning, since the entire
crop calendar gets pushed back. The spring season fire peak (from the wheat harvest) that used
to happen in April and May seems to shift slightly toward June and July, generating the positive
estimates for those two months. The negative estimates for August and September probably also
come from the enforced delay in rice plantation that would have affected some farmers who would
plant rice in early May otherwise. Finally, since there are very few fires to begin with in July, and
since July happens to be the rainy season, the shifting of the wheat fire season perhaps does not
have the same consequences for downwind pollution that the shifting of the rice season does.

I present robustness results to alternative specifications and sample selection in table A.5. These
include the following: OLS estimation rather than Poisson, including fires data from 2000 and
2001,19 and limiting the analysis to the sample for which GDP data is available.20 The results are
consistent with table 2 in all these robustness checks, with only the fire strength when limiting to
the GDP sample becoming insignificant. This lack of power could be due to the effects of policy
not having had enough time to accumulate by 2013 or to anticipation effects just before 2009. It
should certainly not be taken as an indication that the laws did not increase November fire activity.

5.0.2 Effect of November fires on annual downwind pollution

Before turning to the causal effect of PM2.5 on district GDP, I discuss the effect of fire exposure
on district PM2.5 levels. These results are equivalent to the first stage for the 2SLS results on GDP
in the next section. As noted in the previous sections, fires in the winter are particularly harmful
for PM2.5 levels due to prevailing meteorological conditions over North India that favor slower
dispersion of the particulate matter over space. Further, the groundwater laws pushed agricultural
fires in Punjab and Haryana toward November (early Winter). Therefore, I focus on the effect of
November fire exposure on PM2.5.

19 The NASA Aqua satellite was launched in 2002 and drastically improved estimates of fire activity in the FIRMS
database

20 530 district between 2007-2013
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The construction of the explanatory variable log(Nov FRP exposure) is described in section 3.0.5.
Referring to that section, variable 𝐹𝑜𝑡 is the total fire strength measured by Fire Radiative Power
(FRP) of all fires in district 𝑜 on day 𝑡 in November. Certain fires can be stronger because more
organic material is burnt, thereby producing higher amounts of particulate matter. Therefore I use
FRP to maximize signal in the instrument relative to using count of fires.

Next, I implement various distance cut-offs on the exposure measure: origin districts at a larger
distance than the cut-off are not used to construct FRP exposure for destination district. This is
done for two reasons. Firstly, while wind fraction times inverse-distance weighting21 captures
some of the pollution decay over distance, it could miss out on some important features that gov-
ern decay, such as (i) rainfall along the path, which can cause the “wet deposition” of particulate
matter (Vallero 2014) (ii) meteorological conditions along the path such as wind speed, temper-
ature and relative humidity that could also alter the trajectory or cause further deposition out of
the atmosphere and (iii) geographical features such as mountains along the way. For this reason,
I hypothesize that larger cut-offs could add more noise to the instrument. Therefore, I test which
distance cut-off maximizes the within-R2, in order to quantify the trade-off between signal and
noise when increasing the distance cut-offs.

Table 3 shows results for cut-offs between 500 and 1000 km. In panel A, I present results from
a fixed effects model that includes a district-specific time trend, equivalent to the first stage for
equation 4. Panel B presents results from the first difference model with district fixed effects in
equation 5, therefore assuming a district-specific trend in growth of PM2.5. Both these sets of
results show strong and robust elasticities of PM2.5 to November FRP exposure, peaking at a cut-
off of 900 km (for both the coefficient size and within-R2). The main result here is that a 1%
increase in November FRP exposure increases PM2.5 levels by 0.029% (0.032%) with the FE
(FD) model. It further illustrates the trade-off between signal and noise when increasing distance
to origin in constructing the instrument.22 Globally, 900 kmmaximizes within-R2 when explaining
PM2.5 using November FRP exposure. I therefore use that as the preferred distance to construct
the instrument for PM2.5 in the next section.

Now, I address a concern that distance may be correlated with geographic determinants of PM2.5
(and GDP later). Controlling for district fixed effects in these regressions helps address that con-
cern. But, distance also enters the instrument itself non-linearly; it may be that the district fixed
effect does not fully address the issue. Therefore, I construct the instrument for each of these cut-
offs by adding up wind fraction-weighted FRP from qualifying origins without inverse-distance
weighting. Thus distance directly does not enter this instrument. Results for these regressions are

21 The distance decay could be modeled through a distance elasticity different from -1 too. I plan to do this later.
22 Results for regressions with a 100 km cut-off to no distance cut-off at all show an increasing within R2 until 900

km when they start dropping of monotonically.
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presented in appendix table A.6. They do not suggest any cause for concern that distance entering
the instrument non-linearly causes any bias in the first stage.

Lastly, in appendix table A.7, I confirm that higher FRP exposure only from fires during winter
months affects annual PM2.5 levels. This can be explained by unfavorable meteorological condi-
tions during winter that cause the particulate matter emissions from agricultural fires to stay sus-
pended for longer. However, fires in the winter months other than November are not affected by
the groundwater laws in Punjab and Haryana. Therefore, in order to quantify the effect of increased
November fires due to the laws later, I use only November-based FRP exposure instrument in the
analysis of the effect of PM2.5 on GDP in the next section.

5.0.3 Effect of PM2.5 on GDP

In this section, I turn to the impact of annual PM2.5 levels on annual GDP in Indian districts in
panel A of table 4. I present results with the fixed effects in columns 1-3, and with the first dif-
ference specification in columns 4-5. Column 1 presents the OLS estimate controlling for weather
and including district and year fixed effects, but without district-specific linear time trends. The co-
efficient is positive and strongly significant. The causal effect of higher PM2.5 on GDP should be
negative, given the harmful effects on human health and productivity, and potential effects on agri-
culture and machinery. The positive coefficient suggests that this specification is not sufficient to
address the concern about omitted variables that jointly determine GDP and PM2.5, such as yearly
demand shocks that cause higher GDP growth due to certain districts being more trade-exposed,
for example. Higher economic activity in that year would increase PM2.5 levels in that district,
and district fixed effects are insufficient to capture the co-movement of these variables. The esti-
mate is biased upwards since the causal chain runs from GDP to PM2.5 in such cases. The sample
period witnessed very strong GDP growth in Indian districts, making this a particular concern in
this setting.

Column 2 presents results with the addition of a district-specific linear time trend to reduce this
concern. The coefficient turns negative now, although it is imprecise, suggesting that this time
trend is able to reduce the upward bias from the reverse causality of GDP to pollution. It also
suggests the importance of including such time trends for non-stationary GDP data when focusing
on the effect of jointly determined variables such as air pollution, as opposed to plausibly exogenous
variables such as temperature deviations (Dell et al. 2012).

Before discussing the 2SLS estimates in columns 3 and 5, I focus on column 4 which presents
the first difference estimate along with a district fixed effect, in effect assuming a district-specific
trend in the growth rate of GDP. The coefficient is -0.03 and significant at the 5% level. The
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FD specification works much better with non-stationary data, and therefore this coefficient is less
biased and alsomore preciselymeasured than the fixed effects regressionwith time trends in column
2.

Both these approaches solve some of the omitted variable problem plaguing estimation of the effect
of PM2.5 on district GDP. However, any joint residual variation from the trend still causes upward
bias in the estimates. I turn to the instrumental variable strategy to address this residual concern.
In column 3, I present 2SLS results from the fixed effects model with district-specific time trends,
instrumenting for PM2.5 using November FRP exposure with a 900 km distance cut-off. The
estimate is now much larger, although the IV also increases standard errors as expected.

Panel B reproduces relevant first stage estimates from table 3. To test for weak instruments, I also
present two statistics below the first stage estimates. Stock and Yogo (2005) suggest the use of the
Cragg-Donald F-stat in a multivariate setting to test for weak instruments, with a rule of thumb
that a value less than 10 indicates a potentially weak instrument. The Cragg-Donald F-stat is about
101.4; but this relies on iid assumptions for the errors. Therefore, I also report the Kleibergen-Paap
(KP) F-stat which is equivalent to the robust F-stat with one endogenous regressor, as in this setting.
The F-stat of 25.3 is comfortably above 10, and therefore concerns about weak instruments do not
arise here.23

Column 5 presents the 2SLS results from the first difference model. The point estimate is slightly
larger than column 3, and is estimated much more precisely. The KP F-stat is 26.4, again comfort-
ably larger than 10. I consider the specification in column 5 as the preferred specification. These
estimates suggest that increasing PM2.5 levels by 1% in a given year has a large negative causal
effect of 0.18% on district GDP.

5.0.4 Quantifying the impact of groundwater laws on net GDP

The 2SLS estimates from the previous section can be used to estimate the effect of the increase
in November fires in Punjab and Haryana on net GDP. Variation in the instrument in the previous
section comes from November fires in all districts of India, both before and after passage of the
groundwater laws. Therefore, we cannot interpret those estimates directly as the LATE associated
with the laws. But we can use the estimates from this paper to calculate the percentage loss in net
GDP across Indian districts in the following way.

23Andrews et al. (2019) recommend the use of the effective F-statistic (MOP F-stat) of Olea and Pflueger (2013)
in the case of a single endogenous regressor. This statistic is not easily calculated in any R or Stata package that
implements IV with panel data. However, Andrews et al. (2019) also note that with one single endogenous regressor,
the MOP F-stat is equivalent to the KP and robust F-stats. Therefore, the provided F-stat is the correct on to test for
weak instruments. In future versions of the paper, also plan to present identification-robust Anderson-Rubin confidence
intervals which are efficient regardless of the strength of the instrument.
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Results from table 2 demonstrating that the laws increased November FRP in districts of Punjab
and Haryana by an average of 0.542 log points. This increase in November FRP would increase
FRP exposure within 900 km of each district. Since each Punjab and Haryana district sees the same
proportionate increase in fires, and the inverse-distance and wind fraction weights do not change,24

the proportionate increase in FRP exposure for all districts within 900 km is the same. Using the
distance and wind fraction weights, this proportionate increase for each district within 900 km is
also 0.542 log points. The increase in PM2.5 from this 0.542 log points higher November FRP
exposure is 0.542*0.032 = 0.0173 log points, using the first stage estimate from column 5 of table
4. Finally, the proportionate reduction in GDP for each district is 0.0173*(-0.179) = -0.0031 log
points or -0.3%.

The same proportionate reduction in GDP for districts within 900 km can produce different re-
duction in net GDP based on the initial GDP. This estimate for the average yearly impact of the
groundwater laws on net GDP is -0.125%, 54.29 billion Indian Rupees or 1.12 billion USD (2004
values). This estimate is based on the 530 sample districts only, assuming that November fire
exposure is limited to 900 km.

6 Conclusion

This paper estimates the unintended consequences of groundwater conservation laws in the two
states of Punjab and Haryana on net Indian GDP, due to increased air pollution in downwind dis-
tricts. In order to arrive at the net impact, I estimate three elasticities. First, I provide evidence
that the groundwater conservation laws shifted agricultural fire activity from late monsoon into
early winter: biomass burnt in November increased by 72% while it decreased in October by 57%.
This increased fire activity during winter more strongly affects PM2.5 levels because lower wind
speeds and temperatures along with scant rainfall favor longer suspension of particulate matter in
the smoke plumes.

Second, to quantify the impact of higher November fires on annual downwind PM2.5 levels, I con-
struct a novel measure to summarize the exposure of each district to all upwind fires in November.
I show that this exposure measure predicts 4% of the year-to-year variation in PM2.5 within each
district. Third, I estimate the impact of higher PM2.5 levels on contemporaneous GDP. To solve
concerns about omitted variable bias/reverse causality and non-stationarity, I adopt an identifica-
tion strategy that relies on first differences to control for district-specific trends in PM and GDP,
with an instrumental variable that provides exogenous variation in particulate matter. A 10% in-
crease in PM2.5 levels in a given year reduces district GDP in that year by 1.8%. With these three

24 I construct a 10-year average wind fraction for each day here

19



elasticities, I calculate the yearly impact of increased PM2.5 levels due to the groundwater laws
on net Indian GDP to be 0.125%. This estimate does not include non-monetized impacts of this
pollution on health and well-being.

I have conducted some robustness checks that are presented in this chapter, and plan to conduct
more. There are also some limitations to this approach. First, the estimate relies on the exposure
instrument affecting downwind districts in accordancewith its structure. While a chemical transport
model could do better in modeling this relationship, it is much more resource-intensive to operate
and may not do especially well for seasonal sources such as agricultural fires. Second, it is not a
direct LATE of the legislation itself. It relies on the GDP elasticity of pollution that is estimated
usingNovember fires bothwithin and outside Punjab andHaryana. In futurework, I plan on directly
estimating the impact of increased November fires from the groundwater laws on downwind GDP
by restricting fires sources to Punjab and Haryana, and leaving out districts outside North India
that the exposure instrument does not affect. While this would reduce power and potentially limit
external validity to the rest of India, it will also allow me to estimate more directly the impact of
groundwater laws on downwind GDP through exposure only to fires in Punjab and Haryana. I also
plan to

On a different note, I also plan to explore the mechanisms behind the impact of the groundwater
laws on net GDP, driven by the increase in November fires and PM2.5. Does this decrease come
from a reduction in industrial production or agricultural output? Is the main channel the health and
labor productivity impacts of PM2.5? Can firms adjust to this increased pollution by either moving
or reallocating production to other months? One potential issue could be that legislation may affect
local GDP in Punjab and Haryana through the costly adaptation to the laws themselves, biasing the
estimates. Removing districts in these states from the sample would solve that problem. However,
fire exposure is also likely to have the largest impact on PM2.5 on districts within these states and
I prefer not to remove those districts from the sample for that reason. Instead, I intend to utilize
outcomes such as the Index of Industrial Production that are not likely to be directly affected by
the groundwater laws.

These laws were intended to conserve critical groundwater aquifers that have deplted at an alarming
rate. In this paper, I do not investigate whether the laws increased groundwater levels, or quantify
other benefits of this policy. I plan to do these in the future too. But the unintended consequences
of this policy were to exacerbate the effects of agricultural fires on air pollution. Even though
the use of fires to clear fields of residue has large costs in India, a combination of factors ranging
from weak regulatory capacity or political capture by farm lobbies at the macro level, to credit
constraints or lack of trust among smaller farmers may be responsible for this continued practice.
By quantifying GDP losses in other states due to the increased pollution from fires in Punjab and
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Haryana, this paper suggests a mechanism whereby fiscal transfers from these downwind states
affected by increased pollution could be made to farmers in Punjab and Haryana as payment not to
burn (Jack et al. 2022).

The design of payments, specifically whether they should be upfront to alleviate credit constraints
and combined with more stringent monitoring and enforcement, is another question for further re-
search. While these payments go against the “polluter pays” principle that may be more relevant
for the farmers in Punjab and Haryana, who are richer and have larger landholdings than the rest of
India, any workable solutions in such second-best environments should consider the existing polit-
ical and regulatory distortions which make these payments a sensible way to increase welfare. In
the long term, incentivizing farmers to plant crops that are more suitable to the available resources,
priced appropriately, could be a more sustainable solution.
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7 Figures and Tables

Figure 1: Count of fires in Indian districts (2010) ↩
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(a) Fire count

(b) Fire radiative power

Figure 2: Trends in fire count and fire radiative power (2002-2020) ↩
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(a) Average wind directions at origin

(b) Direction from origin to destination

Figure 3: Schematic for Construction of Fire Exposure Instrument. The pink lines on top are
fractions of time during the day when the wind was blowing in that bin. ↩
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Figure 4: Trend in fire exposure, PM and GDP (2007-2013) ↩
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Table 1: Summary Statistics

Variable N Mean SD Min Max

Panel A: Monthly Fire Measures and Groundwater Law (2002-2020)

Count of fires 143640 5.340 32.720 0 1148
Total Fire Radiative Power (mw) 143640 102.75 670.34 0 45044
Groundwater Law Dummy 143640 0.065 0.247 0 1

Panel B: Exposure to Upwind November Fires (FRP-based) with distance cut-off (2007-2013)

Nov FRP exposure, cut-off = 500 3731 35.167 86.607 0.020 675.725
Nov FRP exposure, cut-off = 600 3731 38.924 87.728 0.053 675.902
Nov FRP exposure, cut-off = 700 3731 42.431 88.123 0.063 675.920
Nov FRP exposure, cut-off = 800 3731 45.904 88.126 0.085 675.985
Nov FRP exposure, cut-off = 900 3731 49.451 87.799 0.087 676.289
Nov FRP exposure, cut-off = 1000 3731 52.759 87.268 0.164 676.300

Panel C: Annual Particulate Matter and GDP (2007-2013)

Mean PM2.5 (micrograms/m3) 3731 62.517 27.678 17.828 147.946
GDP (Billions of Rupees, Constant 2004) 3731 81.301 164.07 2.414 3728

Panel D: Annual Weather (2007-2013)

Mean Temperature (∘C) 3731 25.011 3.767 -10.369 29.847
Total Rainfall (mm) 3731 2165.9 430.47 0 2809
Mean Relative Humidity (Ratio) 3731 0.640 0.081 0.388 0.852
Mean Surface Pressure (kilo-pascal) 3731 96.85 4.946 56.460 100.83
Mean Windspeed (m/s) 3731 1.437 0.598 0.329 3.831

Notes: All data is at the district level. The sample consists of 530 districts, except for Panel A which consists of 630
districts (out of 640 census 2011 districts). The reduction is due to ICRISAT GDP data only being available between
2007-2013 for a subset of districts. ↩
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Table 2: Poisson Estimates of Impact of Groundwater Laws on Monthly Fires

Fire Count Fire Radative Power

Pre-2009 Pre-2009
Mean [SD] (1) Mean [SD] (2)

January 1.881 -0.749∗∗∗ 18.459 -0.746∗∗∗

[3.037] (0.137) [38.224] (0.154)
February 2.384 -0.659∗∗ 25.36 -0.809∗∗∗

[3.759] (0.278) [55.396] (0.218)
March 2.11 -0.529∗∗∗ 31.073 -0.771∗∗∗

[4.482] (0.145) [81.6] (0.154)
April 20.527 -1.09∗∗∗ 440.866 -0.789∗∗∗

[27.907] (0.260) [601.855] (0.266)
May 62.546 -0.430∗∗∗ 1330.916 -0.286∗

[72.912] (0.118) [1652.531] (0.157)
June 0.494 0.253 13.74 0.040

[1.306] (0.181) [55.281] (0.158)
July 0.149 0.542∗∗∗ 2.401 0.726∗∗∗

[0.524] (0.196) [9.039] (0.265)
August 0.36 -1.10∗∗∗ 6.031 -1.28∗∗∗

[1.077] (0.289) [19.759] (0.249)
September 4.625 -1.83∗∗∗ 58.319 -1.94∗∗∗

[10.988] (0.182) [143.641] (0.185)
October 192.287 -0.857∗∗∗ 2946.382 -0.855∗∗∗

[268.594] (0.118) [4473.063] (0.158)
November 49.846 0.429∗∗∗ 788.759 0.542∗∗∗

[130.006] (0.116) [2265.141] (0.159)
December 3.084 -0.600∗∗∗ 26.838 -0.526∗∗∗

[3.997] (0.162) [40.39] (0.175)

Observations 4018 140,372 4018 140,372
Pseudo R2 0.784 0.797
Years 2002-2018 2002-2018 2002-2018 2002-2018
Districts 41 630 41 630

continued
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State x Month FE X X
Year FE X X
District FE X X

Notes: Years 2002-2018. Columns 1 and 3 provide mean and
SD of fire count and fire strength before 2009 in Punjab and
Haryana. Columns labeled (1) and (2) provide Poisson estimates.
Standard errors are clustered at district and State x Year. *p<0.1;
**p<0.05; ***p<0.01. ↩
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Table 3: Impact of distance-weighted November fire exposure on PM2.5

Dependent Variable: log(PM)

(1) (2) (3) (4) (5) (6)

Panel A: Fixed Effects Model

log(Nov FRP Exposure) 0.011∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 0.027∗∗∗ 0.029∗∗∗ 0.028∗∗∗

(0.004) (0.004) (0.005) (0.006) (0.006) (0.006)

Observations 3,731 3,731 3,731 3,731 3,731 3,731
Within R2 0.539 0.542 0.546 0.550 0.551 0.549

Panel B: First Differences Model

log(Nov FRP Exposure) 0.008∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.031∗∗∗ 0.032∗∗∗ 0.031∗∗∗

(0.003) (0.003) (0.003) (0.006) (0.006) (0.006)

Observations 3,178 3,178 3,178 3,201 3,201 3,201
Within R2 0.171 0.172 0.173 0.197 0.197 0.193

Distance Cutoff [500 km] [600 km] [700 km] [800 km] [900 km] [1000 km]

Weather Controls X X X X X X
District and Year FE X X X X X X
District x Time Trend X X X X X X

Notes: Years 2007-2013. The sample is limited to districts for which GDP data is available. Each column of
Panel A and B provides estimates from the same regression specification but with a different distance cut-off when
constructing the FRP exposure instrument. Estimates in each panel are equivalent to the first stage for columns 3
and 5 in table 4. Standard errors are clustered at district and Region x Year. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 4: Impact of Air Pollution (PM2.5) on GDP

Dependent Variable

log(GDP) Δ log(GDP)

(1) (2) (3) (4) (5)

Panel A: OLS and 2SLS Results

log(PM2.5) 0.147∗∗∗ -0.008 -0.159 -0.030∗∗ -0.179∗∗∗

(0.035) (0.016) (0.097) (0.014) (0.069)

Observations 3,731 3,731 3,731 3,201 3,201
R2 0.996 0.999 0.999 0.379 0.326

Weather Controls X X X X X
District and Year FE X X X X X
District x Time Trend X X
First Differences X X
2SLS Estimate X X

Panel B: First Stage Results

log(Nov FRP Exposure) 0.029∗∗∗ 0.032∗∗∗

(0.006) (0.006)
Cragg-Donald F-stat 101.4 116.5
Kleibergen-Paap F-stat 25.3 26.4

Notes: Years 2007-2013. The sample is limited to districts for which GDP data is available.
Panel A, columns 1-3, show estimates for both OLS and 2SLS regressions of log GDP level on
log PM2.5, starting without a time trend, then controlling for a time trend and finally conduct-
ing 2SLS with time trend. Columns 4 of panel A shows an OLS estimate using first differences
while column 5 instruments for first difference of log PM with first difference of log Nov Ex-
posure (900 km cut-off). Standard errors are clustered at district and Region x Year. *p<0.1;
**p<0.05; ***p<0.01. ↩
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9 Appendix

Table A.5: Impact of Groundwater Laws on Monthly Fires in Punjab and Haryana - Robustness

Fire Count Fire Radative Power

(1) (2) (3) (4) (5) (6)

January -0.143∗∗ -0.747∗∗∗ -0.746∗∗∗ -0.164∗∗∗ -0.765∗∗∗ -0.918∗∗∗

(0.059) (0.133) (0.078) (0.054) (0.156) (0.080)
February -0.368∗∗∗ -0.737∗∗∗ -0.786∗∗∗ -0.407∗∗∗ -0.867∗∗∗ -0.949∗∗∗

(0.080) (0.252) (0.205) (0.077) (0.202) (0.229)
March -0.398∗∗∗ -0.668∗∗∗ -0.914∗∗∗ -0.500∗∗∗ -0.957∗∗∗ -1.27∗∗∗

(0.049) (0.142) (0.080) (0.057) (0.156) (0.137)
April -0.790∗∗∗ -1.06∗∗∗ 0.198 -0.735∗∗ -0.766∗∗∗ 0.028

(0.289) (0.254) (0.186) (0.335) (0.263) (0.183)
May -0.118∗ -0.534∗∗∗ -0.097 -0.072 -0.410∗∗∗ -0.086

(0.059) (0.118) (0.076) (0.072) (0.158) (0.080)
June -0.078 0.243 0.591∗∗∗ -0.233∗∗∗ 0.054 0.577∗∗∗

(0.052) (0.165) (0.170) (0.077) (0.157) (0.118)
July -0.152∗ 0.517∗∗∗ 1.20∗∗∗ -0.159∗∗∗ 0.698∗∗∗ 1.55∗∗∗

(0.076) (0.150) (0.401) (0.055) (0.220) (0.224)
August -0.495∗∗∗ -1.05∗∗∗ -0.035 -0.699∗∗∗ -1.25∗∗∗ 0.333∗

(0.082) (0.295) (0.070) (0.065) (0.254) (0.182)
September -1.09∗∗∗ -1.95∗∗∗ -1.42∗∗∗ -1.28∗∗∗ -2.07∗∗∗ -1.52∗∗∗

(0.258) (0.193) (0.144) (0.250) (0.195) (0.141)
October -0.223∗∗∗ -0.817∗∗∗ -0.380∗∗∗ -0.190∗ -0.821∗∗∗ -0.535∗∗∗

(0.074) (0.119) (0.070) (0.107) (0.159) (0.079)
November 1.05∗∗∗ 0.509∗∗∗ 0.238∗∗∗ 1.15∗∗ 0.613∗∗∗ 0.124

(0.382) (0.120) (0.081) (0.430) (0.161) (0.091)
December -0.370∗∗ -0.677∗∗∗ -0.323∗∗ -0.359∗ -0.640∗∗∗ -0.355∗∗∗

(0.154) (0.157) (0.132) (0.178) (0.166) (0.103)

Observations 56,082 149,257 43,904 56,082 149,257 43,904
Specification OLS Poisson Poisson OLS Poisson Poisson
Years 2002-2018 2000-2018 2007-2013 2002-2018 2000-2018 2007-2013

continued
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Districts 630 630 630 630 630 630

State x Month FE X X X X X X
Year FE X X X X X X
District FE X X X X X X

Notes: Provides robustness checks for table 2. Columns 1 and 4 conduct OLS estimation
with log(fire count) and log(FRP) as the dependent variables. Columns 2 and 5 conduct
the Poisson estimation with fires data from 2000 and 2001, when the fires are less reliable.
Columns 3 and 6 conduct Poisson estimation by restricting sample to data from the 530
districts over 2007-2013 which have GDP data available. Standard errors are clustered
at district and State x Year. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table A.6: Impact of November fire exposure without distance weighting on PM2.5

Dependent Variable: log(PM)

(1) (2) (3) (4) (5) (6)

Panel A: Fixed Effects Model

log(Nov FRP Exposure) 0.014∗∗∗ 0.021∗∗∗ 0.028∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.028∗∗∗

(0.004) (0.005) (0.006) (0.006) (0.006) (0.006)

Observations 3,731 3,731 3,731 3,731 3,731 3,731
Within R2 0.542 0.545 0.551 0.554 0.553 0.549

Panel B: First Differences Model

log(Nov FRP Exposure) 0.010∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.034∗∗∗ 0.033∗∗∗ 0.030∗∗∗

(0.003) (0.003) (0.003) (0.006) (0.006) (0.006)

Observations 3,178 3,178 3,178 3,201 3,201 3,201
Within R2 0.173 0.174 0.174 0.201 0.198 0.191

Distance Cutoff [500 km] [600 km] [700 km] [800 km] [900 km] [1000 km]

Weather Controls X X X X X X
District and Year FE X X X X X X
District x Time Trend X X X X X X

Notes: Years 2007-2013. Robustness to dropping distance from construction of exposure instrument in table
3. The sample is limited to districts for which GDP data is available. Each column of Panel A and B provides
estimates from the same regression specification but with a different distance cut-off when constructing the FRP
exposure instrument. Standard errors are clustered at district and Region x Year. *p<0.1; **p<0.05; ***p<0.01.
↩
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Table A.7: Impact of distance-weighted Monthly fire exposure on annual PM2.5

Dependent Variable: log(PM)

Jan Feb Mar Apr May Jun

Panel A: Estimates for January to June
log(Monthly FRP Exposure) 0.007 0.017∗∗∗ 0.011∗∗ -0.002 0.007 -0.006∗∗∗

(0.006) (0.006) (0.004) (0.006) (0.006) (0.002)
Observations 3,731 3,731 3,731 3,731 3,731 3,718
Within R2 0.535 0.540 0.537 0.534 0.535 0.537

Jul Aug Sep Oct Nov Dec
Panel B: Estimates for July to December

log(Monthly FRP Exposure) -0.004 -0.002 0.003 -0.010∗ 0.029∗∗∗ 0.012∗

(0.003) (0.003) (0.003) (0.005) (0.006) (0.007)
Observations 3,697 3,726 3,730 3,731 3,731 3,731
Within R2 0.534 0.534 0.535 0.536 0.551 0.536

Distance Cutoff [900 km] [900 km] [900] [900 km] [900 km] [900 km]

Weather Controls X X X X X X
District and Year FE X X X X X X
District x Time Trend X X X X X X

Notes: Years 2007-2013. The sample is limited to districts for which GDP data is available. Each single column
in Panel A and B displays estimates for the regression of annual PM2.5 on exposure to fires during that month of
the year only, using the same specification as in table 3. Standard errors are clustered at district and Region x Year.
*p<0.1; **p<0.05; ***p<0.01. ↩
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