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Abstract

How do the health benefits of reducing air pollution translate into aggregate in-
come gains? Income gains can differ from health benefits because labor productiv-
ity may vary in the places where people experience lower pollution, and because
labor reallocation to those places may reinforce agglomeration economies. This pa-
per studies how incorporating the geography of pollution sources - their location and
long-distance dispersion - can alter income gains through labor productivity and re-
allocation mechanisms. To understand these interactions, I develop a spatial equi-
librium model that accounts for the movement of both pollution and people across
space. I apply this model to study income gains from two archetypal policies that
target non-industrial sources in India and produce comparable health benefits due
to similar population exposure reductions, but in very different places. One policy
controls agricultural fires in northwestern India that spread pollution across much
of north India, while the other reduces localized emissions from sources such as ve-
hicles within India’s 10 largest cities. Accounting only for differential labor produc-
tivity in the cleaned-up places, I find that the latter policy yields a threefold larger
GDP gain than the former. Further accounting for labor reallocation and agglom-
eration economies leads to a sixfold larger GDP gain. These results have important
implications for spatial targeting of pollution control, especially in poor yet polluted
low-and-middle-income countries.
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1 Introduction

Improving air quality can produce substantial health benefits. But how do these health

benefits from spatially targeted pollution control measures translate into aggregate pro-

ductivity gains? Health improvements in targeted locations will produce larger income

gains if labor productivity, or the real output per worker, in that location is higher. At the

same time, changes in relative air quality across space due to targeted pollution control

creates incentives for labor reallocation. If less productive rural areas are targeted by pol-

lution control, the narrowing rural-urban wage gap can reallocate workers to rural areas,

leading to smaller gains from sorting. On the other hand, lower emissions from rural ar-

eas may lead to cleaner downwind cities, and reallocation to those productive cities can

produce larger gains from sorting. This paper develops a spatial equilibrium framework

to account for the movement of both people and pollution across space, and applies it to

India to study the productivity implications of spatially targeted pollution control mea-

sures.

Almost all of India’s population in 2020 experienced annual concentration higher than the

World Health Organization (WHO) limit for particulate matter below 2.5 microns in size,

commonly referred to as PM2.5 (Greenstone 2022).¹ Exposure to such pollution is known

to cause serious health effects that lower the physical productivity of workers.² Lowering

pollution would therefore improve health and physical worker productivity, but the in-

come gains from these improvements will be larger if they occurred in places with a larger

marginal product of labor. While the location of the emissions source is important for this

reason, another key feature of sources is how likely those emissions are to affect people

¹ The WHO annual average limit is 5 𝜇g/m3. 62% lived above India’s own guidelines of 40 𝜇g/m3.
Delhi’s annual average PM2.5 level was 98.6 𝜇g/m3 in 2019, in comparison with New York city’s average of
7 and London’s at 11.4.

² For instance, Chang et al. (2016) show that higher PM2.5 levels lower the number of pears picked
by workers at a factory. In terms of health effects, both short-term and prolonged exposure can lead to
heart attacks, asthma, decreased lung function or cancer, stroke and a variety of other conditions, and cause
premature mortality in people with heart or lung diseases.
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living in distant, downwind places. Sources such as agricultural fires, wildfires, thermal

power plants or industrial smokestacks increase pollution in their vicinity but also dis-

perse pollution to downwind locations that may be hundreds of kilometers away (Singh

et al. 2021; Burke et al. 2021). On the other hand, emissions from sources such as vehi-

cle tailpipes typically decay within a short distance, affecting air quality only within the

jurisdiction in which they are driven. Depending on the geographic location and disper-

sion features of the source, emissions control can leads to better air quality and improved

health in places with very different marginal products of labor, and therefore different

income gains.

In addition to the partial equilibrium labor productivity mechanism for income gains,

changes in relative air quality also causes the relative wage and amenity differentials

across all locations to change, generating incentives tomigrate in general equilibrium. The

location and dispersion features of the regulated pollution source can change whether

workers reallocate to more productive urban or less productive rural locations: if rela-

tively more workers move to high productivity locations, aggregate gains will be larger

due to improved spatial allocation of labor. Between 2002 and 2010, PM2.5 increased by

an average of 10% across India, with substantial heterogeneity across regions. I provide

evidence that a 1% increase in pollution reduced worker migration into Indian districts

by 2%. Since pollution, economic activity and migration are jointly determined, I instru-

ment for changes in pollution with exogenous shifts in upwind agricultural fires that are

unrelated to patterns of local industrial growth.

This paper studies aggregate income gains from spatially targeted emissions control poli-

cies accounting for labor reallocation. Reduced form analysis cannot answer this question

since any change in pollution levels across space alters the inventive to migrate even in

locations where air quality is unaffected by the policy. Instead, I build a worker location

choice model that can accommodate migration of workers and dispersion of pollution

across fine-grained geographic units in India, while being tractable enough to conduct
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policy analysis. Specifically, I embed pollution dispersion across locations into a spatial

equilibrium framework featuring agents with heterogeneous preferences for locations,

and realistic migration costs that restrict mobility (Redding and Rossi-Hansberg 2017).

This framework allows for rich counterfactuals to simulate pollution control measures

currently being implemented in India. The model also accounts for other mechanisms

by which pollution control could affect aggregate productivity: (1) labor reallocation to-

ward cities can affect agglomeration economies (Au and Henderson 2006), and (2) labor

reallocation could also have congestion effects, for example on house prices (Bayer et al.

2009).

Themigration response away frompollution that I documentmay be explained by two po-

tential channels. First, the worker productivity effects of pollution may depress incomes

(Borgschulte et al. 2022). All else equal, a greater pollution differential between two loca-

tions will increase the income differential, lowering the incentive to migrate to the more

polluted location (A. Lewis 1954; Harris and Todaro 1970). The income elasticity governs

how worker migration responds to income differences across locations: a lower elasticity

implies that higher incomes need to be paid on average to induce marginal workers to

migrate. Second, pollution may lower quality of life and thus have a direct amenity value

(Roback 1982). The amenity elasticity governs whether workers respond to pollution by

migrating away due to a lower quality of life. Prior work on developing countries argues

that this second channel is less important given the lowwillingness to pay to avoid air pol-

lution damages as a consequence of low income levels (Greenstone et al. 2021; Greenstone

and Jack 2015).

I estimate these income and amenity elasticities together in a gravity framework implied

by the quantitative model, leveraging data on worker migration across 600 district pairs

from the Indian population census along with data on wage and pollution levels. I em-

ploy an instrumental variables strategy to deal with endogeneity concerns about unob-
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served, residual factors that affect migration and are correlated with wage or pollution.³

Specifically, I construct a shift-share instrument for wages that weights 5-digit industry

national average wages by lagged local employment share in those industries (Tombe and

Zhu 2019). For pollution, I exploit exogenous variation arising from exposure to upwind

agricultural fires. I find an income elasticity of 3.45, while the point estimate of -0.15 for

the amenity elasticity is not statistically distinguishable from zero. Before I conduct pol-

icy analysis using the model, I also estimate several other parameters that govern spatial

equilibrium.

I then turn to evaluating the aggregate productivity gains from two policies that are based

on India’s recently announced pollution controlmeasures. The first policy simulates a 10%

reduction of emissions from agricultural fires or crop burning (herein referred to as the

“rural policy”) originating in the two states of Punjab and Haryana in northwestern India

that accounted for ~56% of all burning events in the country in 2010.⁴ Dispersal of smoke

from crop residue burning in rural areas is an important contributor to pollution in north

Indian cities, accounting for up to 20% of annual PM2.5 concentrations in Delhi in recent

years (Singh et al. 2021). The second policy simulates control of within-city sources such

as vehicles and cookstoves in the 10 largest cities of India (from now on referred to as the

“urban policy”).⁵ This policy produces reductions in pollution that are localized to these

cities due to the nature of the sources being regulated.

I hold total population-exposure reduction constant between the rural and urban poli-

cies, such that well-established public health-based benefit calculations would judge both

³ For example, the quality of housing stock or pre-existing origin-destination migrant networks.
⁴ This policy is based on the Commission forAirQualityManagementAct, 2021 (CAQM)which regulates

emissions sources affecting north India, including cities such as Delhi, Agra, Kolkata and Lucknow. This
commission was established through an act of parliament, and includes members from most north Indian
states. The commission has made many recent efforts to control the practice of burning.

⁵ This policy is based on the National Clean Air Program (NCAP) that was launched in 2019 (Ganguly
et al. 2020). In the first phase, this program required cities to develop action plans for transport sector
interventions and emissions from burning wood for cooking. I rely on a city-level source apportionment
study that estimates the share of each district’s PM2.5 that comes from local transport and domestic sectors
(McDuffie et al. 2021)
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policies to be near-identical.⁶ Accounting only for place-specific labor productivity dif-

ferences, the urban policy increases total GDP by 3 times more than the rural policy. Ac-

counting also for labor reallocation to cleaned-up places and the resulting agglomeration

economies, the urban policy increases total GDP by 6 times more than the rural policy.

Labor reallocation accounts for less than 1% of the GDP gains in general equilibrium from

the rural policy, as opposed to more than half of the gains from the urban policy.

What explains the differential gains from migration? Pollution dispersion and labor real-

location interact with the location and dispersion features of regulated sources to deter-

mine aggregate benefits. Gains from migration are larger when air quality improvements

reallocate workers to cities, since workers produce higher economic output in a more pro-

ductive city compared to a rural area. The control of fires improves air quality along the

entire pollution dispersion path that includes some cities, but it improves air quality in

rural areas more. As a result, migration is skewed toward rural areas, and productivity

gains from migration are smaller. On the other hand, policies to control sources such as

vehicle or cookstove emissions improve air quality solely within the city. This reinforces

the comparative advantage of cleaned-up cities, leading to higher productivity gains from

reallocation to those cities that further amplifies agglomeration economies.

This paper makes several contributions. I provide the first estimates for aggregate pro-

ductivity gains from pollution control in India, and among the first for anywhere in the

world. These results also suggest that air quality regulation that only accounts for health

benefits may underestimate benefits from abatement (US EPA 2015; Currie and Walker

2019).⁷ This is especially true in rapidly urbanizing economies that also suffer from some

of theworst air pollution in theworld. Spatial sorting can change both the spatial distribu-

tion and magnitude of health benefits that are based on partial equilibrium calculations.

⁶ The precise calculations depend on the shape of the dose-response function considered. The EPA uses
a linear function that would produce identical benefits from these two policies, whereas a concave dose-
response would judge the rural policy better due to larger marginal health benefits for rural residents who
are exposed to relatively lower baseline PM2.5 levels.

⁷ Indian air quality regulation is also based on similar standards.
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Further, a more complete characterization of benefits from pollution control policies un-

der consideration would account both labor reallocation and pollution dispersion, since

income gains from avoided pollution dispersion and from resulting labor reallocation are

at least as important as the local health benefits in India.

This paper also contributes to the macro-development literature that views migration

toward urban areas as being synonymous with economic growth and development (A.

Lewis 1954; Gollin 2014). This paper argues that pollution leads to spatial misallocation of

labor because unpriced pollution externalities from economic activity reduce worker pro-

ductivity and wages, thus attracting fewer workers to polluted places. This misallocation

is larger when the pollution externality affects cities where the same worker can be rela-

tively more productive. The implication is that tackling air pollution sources within cities

is a more promising way of generating economic growth. This mechanism also differs

from Khanna et al. (2023) who quantify aggregate productivity losses from high-skilled

workers’ stronger preferences for clean air that leads them to migrate away from pollu-

tion in China. Much of this literature explains the persistence of large spatial productivity

gaps within countries.⁸. This paper relates more closely to the question posed in A. Lewis

(1954) of whether labor reallocation can increase economic output.

The rest of the paper is structured as follows. Section 2 describes the data used in the

paper while section 3 motivates the quantitative model. Section 4 presents the model

while section 5 describes the estimation of the parameters governing equilibrium. Section

6 describes the results from policy counterfactuals and section 7 concludes.

⁸ Caselli (2005) and Gollin et al. (2014) document these gaps; Young (2013) and Bryan and Morten (2019)
are two examples of papers explaining these gaps

7



2 Data and Measurement

2.1 Air quality

An important consideration for air quality data is complete geographical coverage.

Ground-level monitoring station coverage in India is extremely sparse (Greenstone

and Hanna 2014). Observations from these stations also may be more susceptible to

manipulation (Greenstone et al. 2022; Ghanem and Zhang 2014). On the other hand,

satellite imagery-based products provide complete coverage and cannot be manipulated

by local actors. The source of remote sensing data on air quality in this paper is Hammer

et al. (2020), a gridded reanalysis product of global surface PM2.5 concentrations at a

resolution of 0.01∘. This product combines satellite imagery data on Aerosol Optical

Depth with state-of-the-art chemical transport models, and calibrates the output to global

ground-based observations. This product has been used in the literature to measure

PM2.5 levels in settings where ground level observations are sparse (Khanna et al. 2023).

These data are aggregated up to the district level using spatial averaging for analysis.

2.2 Crop Burning

Crop burning, also referred to as agricultural fires, is the practice of setting fire to leftover

residue after crop harvest. There are no representative ground-level observations of this

phenomenon, but the National Aeronautics and Space Administration (NASA) agency

of the United States produces the Fire Information for Resource Management System

(FIRMS) product that is widely used to identify such fires. This product provides infor-

mation on daily, pixel-level fire detection across the world. FIRMS provides a few related

products: a Near-Real Time (NRT) fires using the MODIS instrument aboard Terra and

Aqua satellites, a quality-controlled standard product from the same instrument but with

a 2-3 month lag and another NRT product using the VIIRS instrument from the Suomi-
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NPP and NOAA-20 satellites. The main difference between the first two and the third is

the resolution of the data. MODIS products are at 1 km resolution and are available from

2000 (with higher reliability from 2002 onward when the Aqua satellite was launched)

whereas VIIRS products are at 375 m but only available from 2012.

Since themain analysis in this paper relies on data from before 2012, I am unable to use the

higher-resolution VIIRS-based product. The primary analysis utilizes theMODIS quality-

controlled standard product which differs from the NRT data in that corrections are made

to the imprecise location of the Aqua satellite in the NRT data. Imagery data from Aqua

and Terra satellites is available at least four times daily for each pixel on Earth and is pro-

cessed by NASA using a proprietary algorithm to isolate a ground-level fire signal from

other signals such as solar flares.⁹

I combine this data with land use data from the European Space Agency Climate Change

Initiative’s land cover map (version 2.07).¹⁰ This allows the subset of fires that is found on

agricultural land to be separated from natural forest fires since this paper is interested in

agricultural fires. I aggregate and resample the land cover data which is at a resolution of

300 m to the fire data grid (which is at 1 km resolution); an indicator for agricultural land

use is the main output from this process. All fires are then masked based on this indicator

variable to find the subset of agricultural fires.

2.3 Migration

The source of data on migration in this paper is the Population Census of India, 2011.¹¹

For the reduced form analysis of the effect of pollution on migration, I utilize census ta-

ble D03 that tabulates migrant inflows for each district from all other districts within the

last 4 years, and within 5-9 years before date of survey. I relate changes in these inflows

⁹ Further information on these products is available at https://firms.modaps.eosdis.nasa.gov
¹⁰ Data is available at https://cds.climate.copernicus.eu/cdsapp/#!/dataset/satellite-land-cover
¹¹ See https://censusindia.gov.in/census.website/data/census-tables
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with changes in average pollution over these two periods for each district, as described in

section 3.4.¹²

The spatial equilibrium approach has specific data requirements in the form of migration

shares fromall possible origins to all possible destinations, in order to estimate the amenity

and income elasticities of migration. These requirements are satisfied by constructing

migration shares based on census tabulations of the number of people canvassed in each

district by their district of birth. The use of district of birth as the origin and district of

survey as the destination is an approach the literature has taken before (Bryan andMorten

2019). This measure of migration shares should capture all migrants except for those who

were not present in their destination at the time of enumeration for idiosyncratic reasons.

The census provides two separate tabulations of location of birth and location of enu-

meration (the person’s location at the time of interview for the census). First, table D-01

provides data on the number of people enumerated in a given district who were born in

any district of the same state. This allows construction of within-state migration shares

across districts. Second, table D-11 provides data on the number of people who were enu-

merated in a given district but were born in a different state of the Union of India. In order

to construct the complete data set on migration shares across all districts of India, I need

to allocate data from table D-11 on the number of people who were born in a given state

but moved to a district outside that state, to the various districts within that state of origin.

This data is not publicly available.

In order to do this, I utilize information on the out-migration tendency of districts from

table D-01 by calculating each district’s share of out-migrants within the same state. Then

I assume that these within-state out-migration shares are the same for out-migration to

districts in other states. This allows me to allocate the number of out-migrants to a district

¹² Migrant inflow data is also broken down by gender and the reason for migration. I use this table to
show that the primary self-reported reason for female migration in India is for marriage, since the social
norm is for newly-married women to move to their husband’s town or village. In contrast, the dominant
reason for male migration is work-related.
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outside the state, to each district of the state of origin. This method allows construction of

migration shares from a district in a given state to another district outside that state, with

some error. To the extent that certain districts send out more migrants, whether within

state or outside, this method would capture relevant information. This method also does

not use additional information such as distance between districts or relative wages that

enter the estimating equation described later.

2.4 Wages

Wage data are utilized mainly in the estimation of migration elasticities. These come from

theNational Sample SurveyOrganization’s Employment andUnemployment round 68 for

the year 2010-11. The sample provides microdata on individual earnings and work hours

within the last 7 days fromdate of enumeration alongwith information on 5-digit industry

codes; whether the work contract was permanent (salaried) or made on the spot (casual

labor); andwhetherworkwas donewithin household, for an employer or on publicworks.

I restrict the sample to individuals aged 18-59, who work for an employer regardless of

contract type as the most representative group of people when constructing the average

district wage.

2.5 Meteorological data

Wind data are used to construct exposure to smoke from agricultural fires for every origin-

destination pixel pair. Details of the methodology follow in section 3.3.1 below. These

data come from the ERA5 family of global gridded reanalysis datasets produced by the

European Center for Medium Range Weather Forecasting (ECMWF).¹³ Reanalysis data

combine ground-level observations and satellite data with chemical transport models that

¹³ Data is available at https://cds.climate.copernicus.eu

11

https://cds.climate.copernicus.eu


represent physical and chemical processes in the atmosphere to produce reliable and com-

plete coverage for theworld. Since ground-level observations are particularly sparse in de-

veloping countries, these reanalysis data are widely used in the literature on climate and

air pollution (Auffhammer et al. 2013). Hourly wind speed and direction data are taken

from the ERA5-Land hourly dataset which is available at a resolution of 0.1∘. These are

combined with daily agricultural fires at the pixel level to construct the smoke exposure

variable, as described in section 3.3.1 below. Finally, I also construct temporal averages

for weather variables including rainfall, temperature and relative humidity from this data

set to be used as controls in the regression analysis.

3 Motivation

3.1 Geography of Targeted Sources Matters for Income Gains

An important feature of pollution sources for income gains is their geographic location:

are sources in rural or urban areas? A given health improvement due to lower pollution

allows any worker to produce more real output. Now imagine this worker in two scenar-

ios, one where she lives in a rural area and another in an urban setting. If she lives in an

urban location she is more likely to work in a higher marginal product industry. There-

fore, the same health improvement is more likely to produce larger real output if that

worker resides in an urban place that is characterized by a higher marginal product. Two

pollution control policies that achieve comparable health improvements over the affected

populations may lead to very different income gains if those health improvements occur

in places with very different marginal products of labor.

Unlike greenhouse gases that uniformly mix in the atmosphere and change global climate

patterns, air pollution emissions have local effects. A second geographic feature of spe-

cific pollution sources that matters for income gains is whether they disperse pollution
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to downwind locations hundreds or thousands of kilometers away, sometimes termed

“long-distance transport.” The income gains from controlling a rural source that also af-

fects urban pollution may be larger than controlling another rural source that only affects

local pollution in the rural area (and vice-versa for urban sources). Sources targeted by

pollution regulation may differ in these two geographic dimensions outlined above, and

therefore may have distinct consequences for income gains.

3.2 Indian Pollution Control Programs Target Distinct Sources

In this paper, I study two policies that are motivated by real-world policy dilemmas fac-

ing Indian policymakers. Urban policymakers are likely to emphasize upwind emissions

from mostly rural areas so that they can avoid taking blame for local emissions that also

contribute to high local pollution levels.¹⁴ At the same time, national policymakers in-

variably focus on reducing emissions from urban sources first, since mostly urban-biased

media tends to highlight urban issues more.

These competing pressures are seen in two recent pollution control programs of the Gov-

ernment of India. The Commission on Air Quality Management Act, 2021 (CAQM) is a

recent legislation that aims to curb pollution in north India, an area that includes cities

such as Delhi, Agra and Lucknow. CAQM explicitly targets crop residue burning in rural

areas of northwestern India that disperse smoke over hundreds of kilometers to cities in

north India. At the same time, the National Clean Air Program, 2019 (NCAP) is a recent

attempt to clean up urban pollution in cities that are classified as “non-attainment,” or

having air pollution above certain thresholds. Phase 1 of NCAP targets emissions sources

within cities such as vehicles and cookstoves that also tend not to affect downwind areas

far away, so-called “localized sources” (Ganguly et al. 2020).

In this paper, I simulate two archetypal policies that are based on CAQM and NCAP.

¹⁴This happenswith alarming frequency in the city of Delhi, where seasonal crop residue burning sharply
increases pollution levels during the winter and spring seasons.
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Due to differences in the location and dispersion features of the emissions sources being

controlled, the importance of economic mechanisms leading to income gains may differ

between these two policies. In order to analyze the interaction of these economic mech-

anisms with the geographic features of emissions sources, I hold fixed the health benefits

from the two policies of interest. These health benefits are calculated by environmental

agencies such as the US EPA using standard methodology that relates the change in pol-

lution exposure per person to changes in morbidity and mortality risk (for eg. the risk of

death or disability from a stroke) using published epidemiological dose-response func-

tions. Therefore, I hold the total population-exposure fixed between these policies, so that

they will be rated as producing similar total health benefits.¹⁵

3.3 Long-distance Pollution Dispersion Matters for Crop Burning

The main determinant of long-distance pollution dispersion from a given source is

whether the emissions plume reaches a height where ground-level convective processes

are unable to bring the plume down to earth close to the source location. Once captured

by upper atmospheric winds, the plume can travel hundreds or even thousands of

kilometers (Vallero 1973). Other factors that can impact this process include the decay

rate of pollutants, meteorological conditions, and the presence of obstructions like

buildings. For example, localized emissions from vehicles can get trapped by buildings

due to limited airflow (Wang et al. 2006). Various studies on the decay rates of vehicular

pollutants finds that these emissions rarely travel more than a couple of kilometers (Liu

et al. 2019). At the same time, emissions from indoor cookstoves that burn polluting fuels

like firewood and charcoal can affect ambient concentrations in the vicinity (Chafe et al.

2014). Evidence from India also suggests that air pollution from such sources only affect

¹⁵: If the dose-response function is linear, these benefits will be identical. For some diseases, this function
may be concave in pollution exposure. Slightly larger health gains will therefore be achieved for places that
have lower baseline pollution; these are usually rural places. It is rare to find any convex dose-response
functions, although ongoing epidemiological research may find one.
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local air quality (Guttikunda et al. 2023).

On the other hand, crop residue burning in rural areas is a well-known public health issue

in distant, downwind cities (Singh et al. 2021). Although air pollutionmodelers have done

work on understanding the contribution of crop residue burning on downwind pollution

(Guttikunda et al. 2023), tools to conduct the kind of policy simulation I perform do not

exist. Therefore, in the next section, I develop a method that facilitates a spatially explicit

yet computationally feasible analysis of where air quality would improve as a result of

controlling crop residue burning.

3.3.1 Modeling Pollution Impact of Crop Residue Burning

First, I briefly cover the causes of crop burning (also referred to as agricultural fires). Crop

burning is used to clear agricultural fields of leftover residue after the crop harvesting,

before sowing and planting the next crop (Shyamsundar et al. 2019); this differs from

slash-and-burn agriculture that is practiced in parts of Africa and Indonesia (Andini et

al. 2018). Figure 1 provides a map of where crop burning is most prevalent in India;

fires are concentrated in the northwestern states of Punjab and Haryana. It is a common

practice in these regions since the rice residue must be removed before the wheat crop can

be sowed. The turnaround time between rice harvest and wheat sowing is about 2 weeks,

dictated by seasonal patterns. This further incentivizes the use of burning to remove the

residue. Appendix section 9.4 provides more detail on the causes behind the burning of

agricultural residue.

In the rest of this section, I develop a smoke dispersion model to calculate smoke expo-

sure of any location to all upwind fires. I then estimate the impact on PM2.5 of this smoke

exposure. These two objects capture the consequences for pollution reduction of the crop

burning policy. I start with the smoke dispersion model. In order to capture the contribu-

tion of crop burning emissions 𝐸𝑜 in source district 𝑜 on air quality in receptor district 𝑑, I
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construct a source-receptor smoke dispersal matrix for all pairs of districts. Since agricul-

tural fires are observed at a daily level, I leverage daily variation in wind patterns at the

origin district to construct this matrix for every year 𝑦 and 𝑜 ≠ 𝑑 as follows

𝜔𝑜𝑑𝑦 = (
𝐷𝑒𝑐−31−𝑦

∑
𝑡=𝐽𝑎𝑛−1−𝑦

𝜃𝑜𝑑𝑡𝐸𝑜𝑡) (1)

where

𝜃𝑜𝑑𝑡 = 𝑤𝑖𝑛𝑑𝑜𝑑𝑡
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑑

A schematic for the construction of 𝜃𝑜𝑑𝑡 is shown in figure 2. The numerator 𝑤𝑖𝑛𝑑𝑜𝑑𝑡 is

the daily average fraction of time that the wind at 𝑜 blows towards 𝑑 on day 𝑡. In order

to calculate 𝑤𝑖𝑛𝑑𝑜𝑑𝑡, I start by assigning each hourly wind observation in 𝑜 on day 𝑡 into

one of 36 bins of 10 degree span each, based on the wind direction that hour (true north

is 0 degree as in the figure). I then construct the wind speed-weighted fraction of time

the wind was blowing in each of these 36 bins by aggregating hourly observations for day

𝑡. 𝑤𝑖𝑛𝑑𝑜𝑑𝑡 is calculated by summing up wind fractions for the bins within th 180-degree

cone in the direction of 𝑑 from 𝑜.

Daily smoke exposure from 𝑜 to 𝑑 is then calculated bymultiplying 𝜃𝑜𝑑 by daily emissions

𝐸𝑜𝑡 at origin. Annual smoke exposure from pixel 𝑜 to 𝑑 is then the sum of daily smoke

exposures. Once I have this source-receptor matrix for each year in hand, I construct total

smoke exposure Ω𝑑 for destination 𝑑 as the sum of exposures 𝜔𝑜𝑑 from all origins 𝑜 plus

the local annual emissions 𝐸𝑑.

Ω𝑑 = ( ∑
𝑜≠𝑑

𝜔𝑜𝑑) + 𝐸𝑑 (2)

The vector Ω summarizes the smoke exposure of any given location to crop burning in
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all other locations, accounting for daily changes in fire activity and wind pattern at those

locations. Figure 3 demonstrates visually that this smoke exposure metric positively cor-

relates with PM2.5 across Indian districts.

In order to estimate the causal effect of annual smoke exposure Ω𝑑𝑦 on average annual

PM2.5 concentration 𝑃𝑀𝑑𝑦, I run the following regression at the district-level using panel

data from 2002-2016. I estimate various functional forms of g(.); more details is provided

in the appendix. Summary statistics for the regression variables are provided in table 7.

𝑃𝑀𝑑𝑦 = 𝑔(Ω𝑑𝑦) + 𝑌𝑦 + 𝐷𝑑 + 𝜖𝑑𝑦 (3)

The identification assumption is that local pollution levels do not lead to abatement of crop

burning, in local or upwind areas. This is likely to be satisfied, given that most regulations

on crop burning are not implemented (Jack et al. 2022).

Figure 4 depicts this empirical relationship for a cubic functional form of g(.). Appendix

table A.1 shows the estimated functional form for this exercise.

3.4 Pollution Alters Location Choice

Does migration to Indian districts reduce in response to higher pollution from fires? To

answer this question, I conduct a reduced form exercise that relates changes in district

migrant inflows of workers between 2006-2010 and 2001-2005 to changes in average an-

nual pollution concentrations in those years. Local changes in pollution are likely to be

determined by growth patterns that are also positively correlated with migrant inflows.
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Figure 1: Hotspots of fire activity in India (2010)
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(a) Wind direction at origin

(b) Direction from origin to receptor

Figure 2: Schematic for construction of smoke exposure for Smoke DispersionModel. The
windrose in panel (a) captures the direction from which the wind blows. ↩
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(a) Annual District PM2.5 Concentration (2010)

(b) Annual District Smoke Exposure Ω (2010)

Figure 3: Spatial correlation between district smoke exposure and PM2.5. ↩
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Figure 4: Relationship between District Smoke Exposure and PM2.5

Therefore, the OLS estimate will be biased toward zero, underestimating the true effect

of pollution on migrant inflows that we expect to be negative. In order to solve this endo-

geneity problem, I instrument for change in pollution with change in exposure to distant

fire activity in upwind districts. This instrument allows me to isolate changes in pollution

in district 𝑑 that have nothing to do with economic activity in 𝑑 but instead are due to

changes in fire activity in upwind districts. The identifying assumption is that the shift in

average 4-year agricultural fire activity in the upwind district 𝑠 is correlated with changes

in migrant inflow in 𝑑 only through its effect on pollution changes in 𝑑.

I conduct this analysis on migrant inflows into districts indexed by 𝑑, as specified in equa-

tion 4. The first differences specification removes any fixed determinants of migrant in-

flows at the district level that also determine pollution, such as the presence of a coastline.

Instrumenting for Δ𝑙𝑜𝑔(𝑃𝑀) with Δ𝑙𝑜𝑔(𝑆𝑚𝑜𝑘𝑒𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒) addresses the concern of joint

changes in migration and pollution due to local industrial growth patterns.Figure 5 plots

the first stage; there is a very strong correlation between change in smoke exposure and

change in pollution. I also allow for separate trends in migration and pollution for dis-
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Figure 5: Visualizing the first stage between smoke exposure and pollution

tricts in the Indo-Gangetic plain (North), peninsular (South) and Himalayan (Far North

and North-East) regions since their cultural and geographic distinctiveness makes com-

parisons within these regions more compelling.

Δ𝑙𝑜𝑔(𝑀𝑖𝑔𝑟𝑎𝑛𝑡 𝑖𝑛𝑓𝑙𝑜𝑤𝑑) = Δ𝛽𝑙𝑜𝑔(𝑃 𝑀𝑑) + 𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐_𝐹𝐸𝑑 + Δ𝜖𝑑 (4)

Table 1 documents the results of this exercise for inflows of migrants who move for work.

Column (1) suggest that a 1% change in pollution levels is associated with a 0.96% reduc-

tion in migrant inflows, on average. This is likely to be a biased estimate due to omitted

variables that determine both pollution and migration. Column (3) documents an elastic-

ity of -1.99 (standard error of 0.86). This implies that a 1% increase in pollution reduces

migrant inflows by ~2%. As can be seen in column (4), the smoke exposure instrument

is strongly correlated with pollution; since this exposure to distant, upwind fires is ex-

ogenous to local economic activity and is unlikely to be a result of local activity, this in-

strument is both valid and exogenous, and the estimate of -1.99 in column (3) is unbiased.
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Appendix table ?? finds similar results when not controlling for separate trends by the

three regions.

While these results provide evidence for a sorting response to pollution across Indian

districts, they do not explain the mechanisms behind this finding. This paper hypothe-

sizes two potential channels through which air pollution can affect migration decisions.

The first channel is the well-documented harmful effects on physical worker productivity

(Graff Zivin and Neidell 2012; Chang et al. 2019; Fu et al. 2021). While this literature

focuses on the intensive margin of reduction in worker output per hour, there also may

be an extensive margin reduction in the number of hours worked due to air pollution.

The net result of these intensive and extensive margin effects is a reduction in total out-

put since pollution acts like a negative TFP shock, also reducing the marginal product of

labor. Firms may adjust to lower output and profits by attempting to lower the wages

they pay. This is consistent with recent evidence on the negative effect of air pollution on

worker income in the US (Borgschulte et al. 2022). Figure 6 also presents correlations that

are consistent with this hypothesis from India: nominal wages are lower in districts with

higher pollution.

Secondly, the absence of air pollution can also be thought of as an amenity, generating

compensating differentials in wages for locations with higher pollution. This only arises

if workers value clean air as an amenity. The literature on air pollution in developing

countries suggests that workers have a low willingness to pay for clean air, including for

reasonably cost-effective adaptations such as mask-wearing (Greenstone and Jack 2015).

These findings are consistent with the notion of clean air as a normal good, so that de-

mand for it is muted in a low-income country like India. But, the findings in this paper

that districtswith higher pollution receive lowermigrants could also arise if workers avoid

polluted cities. This second mechanism would be consistent with recent work document-

ing that the disamenity costs of migration that lead some workers in India to forego gains

of up to 35% of income by not migrating to cities may relate to air pollution as well (Imbert
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and Papp 2020).

The effect of pollution on inflows of migrant workers is consistent with either mechanism.

The quantitative model can help guide us toward a solution to the empirical challenge

of separating the amenity and income channels through which pollution affects location

choice of workers.

Table 1: Effect of Pollution on Migrant Inflows

Dependent variable

Δ log(inflow) Δ log(PM2.5)

OLS Reduced Form 2SLS First Stage

(1) (2) (3) (4)

Δ log(PM2.5) -0.96 -1.99

(0.39) (0.86)

Δ log(Fire Exposure) -0.52 0.25

(0.22) (0.04)

Observations 627 627 627 627

Geographical Fixed Effect Y Y Y Y

First stage F-stat 267.8

Notes: Outcome variable is change in log migrant inflow for those who listed their reason for

migration aswork-related between 2006-2010 and 2001-2005. Standard errors clustered at region

level in brackets.

3.5 Migration Costs Affect Location Choice

Spatial productivity gapsmay be explained by the presence of largemigration costs across

space. I document the existence of largemigration frictions across Indian districts through
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Figure 6: Wages are negatively correlated with pollution in 2010

the following regression of migration count between each origin-destination district on

origin and destination fixed effects, and three measures of migration costs.¹⁶ These mea-

sures are (1) the inverse hyperbolic sine of distance between origin and destination, prox-

ying for difficulty of migration due to travel cost and time as well as distance from home

(2) whether the districts share a cultural affinity, proxied by a different language being

spoken in the districts, and (3) whether the districts are in different states, proxying for

origin-state biased policy and other state-level determinants of migration patterns.

𝐿𝑜𝑑 = 𝛼1𝑖ℎ𝑠(𝑑𝑖𝑠𝑡𝑜𝑑) + 𝛼2𝟙(𝑙𝑎𝑛𝑔𝑜𝑑) + 𝛼3𝟙(𝑠𝑡𝑎𝑡𝑒𝑜𝑑) + 𝐷𝑜 + 𝐷𝑑 + 𝜖𝑜𝑑 (5)

As results in table 2 show, all three of these measures of migration costs strongly predict

the migration propensity between Indian districts.

¹⁶ Estimation is done via Poisson Pseudo Maximum Likelihood estimator of Silva and Tenreyro (2006)
since it has many desirable properties over OLS in a gravity-like framework, including the ability to handle
zero migration. Section 5.2 justifies the use of PPML based on these properties.
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Table 2: Migration Costs and Labor Reallocation

Dependent variable

𝐿𝑜𝑑

(1)

𝑖ℎ𝑠(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑑) -1.017

(0.007)

Different language -0.344

0.081

Different state -1.919

(0.081)

Observations 360,000

Adj Pseudo R-Sq 0.98

Fixed Effects Origin + Destination

Notes: Estimation via PPML. SEs clustered at enumer-

ation district. 𝑖ℎ𝑠 is the inverse hyperbolic sine of dis-

tance to account for zero distance. The indicator vari-

ables for language and state turn on when origin and

destination districts do not share the main language

or are in different states.
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4 Spatial Equilibrium Model with Pollution Dispersion

This section incorporates air quality spillovers into a canonical quantitative model of eco-

nomic geography (Redding and Sturm 2008) to investigate how spatial productivity dif-

ferences and labor reallocation interact with the movement of people and pollution to

determine income gains from specific pollution control measures. The reader is referred

to Redding and Rossi-Hansberg (2017) for a survey of the economic geography literature

on the development of these models.

4.1 Worker Preferences

There are 𝐿𝑜 workers in location 𝑜 to begin with. Workers have preferences over a con-

sumption good 𝐶𝑑, amenities 𝐵𝑑 and air quality (the inverse of air pollution level 𝑃𝑀𝑑).

𝑢𝑜𝑑 = 𝜖𝑜𝑑𝐵𝑑(𝑃𝑀𝑑)𝜆𝐶𝑑𝑀𝑜𝑑

𝐵𝑑 consists of a fixed component that can include climate and other amenities, as well

as an endogenous component that varies in response to congestion. An example of such

a congestion force is the cost of housing that depends on the housing supply elasticity.

𝜖𝑜𝑑 is an idiosyncratic preference shifter that captures preferences for location 𝑑. 𝜖𝑜𝑑 is

i.i.d across workers and locations, and is drawn from a Frechet distribution given by the

CDF 𝐹(𝜖) = 𝑒−𝜖−𝜂 . The parameter 𝜂 controls the dispersion of these shocks. A small

value of 𝜂 implies that the probability of a large draw for 𝜖 is larger, implying that the

worker is particularly attached to location of birth 𝑜 and would not move even with large

wage or amenity differentials between origin and destination. This can captures realworld

features such as strong local ties, for example. The parameter 𝜂 can also be interpreted as

the income elasticity of migration across districts.

𝑃𝑀𝑑 is the level of air pollution in location 𝑑. If workers have preferences over clean air,
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locations will be characterized by compensating differentials for pollution, with elasticity

given by 𝜆. If 𝜆 < 0 then pollution does indeed have amenity value for workers.

In this quasi-dynamic model, worker born in location 𝑜 has made a decision on whether

to stay or move to another destination location 𝑑 when we observe them. But movement

across locations is costly. This migration cost 𝑀𝑜𝑑 from origin 𝑜 to destination 𝑑 may

represent physical costs of migration, salient differences in culture and language, and also

policy differences such as access to welfare benefits that are attached to the location of

birth. About 80% of migration in India is within the state, an entity that shares a common

language and cultural features as well providing access to these benefits

Labor income in location 𝑑 is given by wage 𝑤𝑑. Workers choose the location where they

receive highest utility, subject tomoving costs. If the indirect utility function for theworker

is represented by 𝑉𝑜𝑑, then the worker chooses 𝑑 over 𝑑′ if 𝑉𝑜𝑑 > 𝑉𝑜𝑑′ . Indirect utility

function is given by

𝑉𝑜𝑑 = 𝜖𝑑𝐵𝑑𝑀𝑜𝑑(𝑃 𝑀𝑑)𝜆(𝑤𝑑
𝑃𝑑

)

This formulation allows us to write the migration share from 𝑜 to 𝑑, 𝜋𝑜𝑑, as follows, where

we have made use of the properties of the Frechet distribution. A derivation is provided

in appendix section

𝜋𝑜𝑑 = 𝐿𝑜𝑑
𝐿𝑜

=
[𝐵𝑑𝑀𝑜𝑑(𝑃𝑀𝑑)𝜆(𝑤𝑑

𝑃𝑑
)]𝜂

𝑁
∑
𝑘=1

[𝐵𝑘𝑀𝑜𝑘(𝑃𝑀𝑘)𝜆(𝑤𝑘
𝑃𝑘

)]𝜂
(6)

All of the local income is derived from wages and is completely spent on demand for the

consumption good. Therefore, total demand 𝐷𝑑 is given by

𝐷𝑑 = 𝑤𝑑𝐿𝑑
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4.2 Production and General Equlibrium

Each location 𝑑 produces a homogeneous good 𝑌𝑑 using a linear technologywith labor 𝐿𝑑

and TFP 𝐴𝑑. Each worker supplies one unit of inelastic labor. TFP varies across locations

and may be affected by pollution 𝑃𝑀𝑑 and agglomeration forces.

𝑌𝑑 = 𝐴𝑑𝐿𝑑

Markets are perfectly competitive. Therefore, the price of each good equals marginal cost.

𝑃𝑑 = 𝑤𝑑
𝐴𝑑

All goods are produced and consumed locally so there is no goods trade. Output is then

determined purely by demand 𝐷𝑑. Assuming the consumption good to be the numeraire

(𝑃𝑑 = 1), the wage in each location is pinned down by

𝑤𝑑 = 𝐴𝑑

Model equilibrium is characterized by the following equation.

𝜋𝑜𝑑 =𝐿𝑜𝑑
𝐿𝑜

= [𝐵𝑑(𝑃𝑀𝑑)𝜆𝑤𝑑𝑀𝑜𝑑]𝜂

𝑁
∑
𝑘=1

[𝐵𝑘(𝑃 𝑀𝑘)𝜆𝑤𝑘𝑀𝑜𝑘]𝜂

= [𝐵𝑑(𝑃 𝑀𝑑)𝜆𝐴𝑑𝑀𝑜𝑑]𝜂

𝑁
∑
𝑘=1

[𝐵𝑘(𝑃𝑀𝑘)𝜆𝐴𝑘𝑀𝑜𝑘]𝜂

(7)

𝐿𝑑 =
𝑁

∑
𝑜=1

𝜋𝑜𝑑𝐿𝑜 (8)
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Productivity 𝐴𝑑 and amenity 𝐵𝑑 endogenously adjust when the population in a location

change.¹⁷ The next sections describe these adjustment mechanisms and associated elastic-

ities. The population vector is the variable that adjusts until equilibrium is reached in the

model, pinning down the values of all other endogenous variables that depend on it.

4.3 Productivity is Endogenous due to Agglomeration and Pollution

TFP varies by location due to fixed exogenous factors like soil quality, presence of rivers,

or availability of raw materials like mineral ores; agglomeration forces; and the effect of

pollution on worker productivity. Equation 9 formalizes these ideas. 𝐴𝑑 is exogenously

determined productivity that does not respond to employment.

𝐴𝑑 = 𝐴𝑑(𝑃𝑀𝑑)𝛽𝐿𝜙
𝑑 (9)

𝛽 determines how worker productivity responds to pollution; if 𝛽 < 0, productivity is

negatively affected by pollution. The strength of agglomeration forces that may arise from

any potential non-excludable innovation (Arrow 1962) is captured by 𝜙𝑗.

4.4 Amenity is Endogenous due to Congestion Forces

Amenity value of a location depends on endogenous factors such as housing rental prices.

The elasticity 𝜓 captures these factors. Asmoreworkersmove into a city, congestion forces

such as rental rates rise, making the city slightly less desirable for the next migrant.

𝐵𝑑 = 𝐵𝑑𝐿𝜓
𝑑 (10)

¹⁷ I allow pollution 𝑃𝑀𝑑 to also adjust endogenously in an extension to the model.
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4.5 Pollution is Affected by Local and External Sources

Pollution 𝑃𝑀𝑑 in location 𝑑 is modeled as follows

𝑃𝑀𝑑 = (𝑃 𝑀𝑑) 𝑔(Ω̃𝑑) (11)

The fixed component of pollution 𝑃 𝑀𝑑 captures sources of pollution from within the

district, such as vehicles tailpipe emissions. The second component 𝑔(Ω̃𝑑), is the contri-

bution of total smoke exposure from all sources to pollution in location 𝑑, analogous to

the discussion in section 3.3. In contrast to the empirical exercise in that section, Ω̃𝑑 is

constructed using a source-receptor matrix that depends on average wind patterns and

emissions. This quantity captures average pollution changes due to the pollution policies

thatmigrants are likely to consider in their location choice decisions. The tilde emphasizes

that these analogous quantities are long-term averages.

Ω̃𝑜𝑑 = ̃𝜃𝑜𝑑𝐸𝑜 (12)

where

̃𝜃𝑜𝑑 = 𝐸[𝑤𝑖𝑛𝑑𝑜𝑑]
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑑

(13)

The expected value of 𝑤𝑖𝑛𝑑 in the numerator in equation 13 captures prevailing wind pat-

terns at each origin; I construct these using 10-year annual average wind patterns, weight-

ing by the daily average fire count to capture seasonality in fire activity at source. There-

fore, this method gives zero weight to wind patterns on days with no fire activity at the

source location. The quantity ̃𝜃𝑜𝑑 captures exogenous physical determinants of source-

receptor smoke exposure and together determine how exposed district 𝑑 is to emissions

in origin 𝑜.
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5 Identification and Estimation of Model Parameters

Table 4 shows the model parameters that are estimated in this paper. Apart from the

productivity elasticity of pollution, and the agglomeration and congestion elasticities, I

estimate all the other parameters of the model. This section will present the research de-

sign and discuss results for each of these parameters. Summary statistics for the data used

in the various parameter estimation exercises and for the pollution spillover elasticity of

agricultural fires are provided in table 7.

5.1 Impact of Smoke from Crop Burning on PM2.5

The function 𝑔(.) has been estimated using panel data on equation 3 in section 3.

5.2 Income and Pollution Elasticities of Migration (𝜆, 𝜂)

The equilibrium migration shares predicted by the quantitative model in equation 6 pro-

vide a means to separately identify 𝜂 and 𝜆 - the income and pollution elasticities of mi-

gration - using data on migration shares across Indian districts.

In order to estimate this equation on migration shares data, we need to specify migration

costs 𝑀𝑜𝑑. I assume that 𝑀𝑜𝑑 take the form 𝑀𝑜𝑑 = 𝑒𝑥𝑝(−𝑚𝑜𝑑), where 𝑚𝑜𝑑 are parameter-

ized such that migration costs are normalized and symmetric (𝑀𝑜𝑜 = 1 and 𝑀𝑜𝑑 = 𝑀𝑑𝑜).

𝑚𝑜𝑑 = 𝜈1𝑖ℎ𝑠(𝑑𝑖𝑠𝑡𝑜𝑑) + 𝜈2𝟙(𝑙𝑎𝑛𝑔𝑜𝑑) + 𝜈3𝟙(𝑠𝑡𝑎𝑡𝑒𝑜𝑑)

Here 𝑑𝑖𝑠𝑡𝑜𝑑 measures the physical distance between districts 𝑜 and 𝑑, 𝟙(𝑙𝑎𝑛𝑔𝑜𝑑) in an indi-

cator for whether a different language is spoken in 𝑜 and 𝑑 and 𝟙(𝑠𝑡𝑎𝑡𝑒𝑜𝑑) in an indicator

for whether district 𝑜 and 𝑑 belong to different states.
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Taking the natural log of equation 6 gives us the stochastic version of the migration equa-

tion to take to the data

𝑙𝑜𝑔(𝜋𝑜𝑑) = 𝜂 𝑙𝑜𝑔(𝑤𝑑) [Income]

+ 𝜂𝜆 𝑙𝑜𝑔(𝑃𝑀𝑑) [Pollution disamenity]

− 𝜂𝜈1𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝑜𝑑) − 𝜂𝜈2𝟙(𝑙𝑎𝑛𝑔𝑜𝑑) − 𝜂𝜈3𝟙(𝑠𝑡𝑎𝑡𝑒𝑜𝑑) [Migration cost]

− 𝑉𝑜 [Origin option value]

+ 𝜂 𝑙𝑜𝑔(𝐵𝑑) + 𝜖𝑜𝑑 [Residual]

where 𝑉𝑜 = 𝑙𝑜𝑔(∑𝑁
𝑘=1[𝐵𝑘𝑀𝑜𝑘𝑃𝑀𝜆

𝑘 𝑤𝑘]𝜂) is fixed within each origin, and the residual

contains destination amenities and other idiosyncratic features that determine bilateral

migration shares.

The identification challenges with 𝜂 and 𝜆 are twofold: (1) there may be destination-

specific amenities in the residual that are correlated with wages or pollution, for eg. a

coastal location that makes the location more desirable for high-wage individuals while

also reducing PM2.5 levels due to the sea breeze; and (2) origin-destination specific omit-

ted factors such as pre-existing migrant networks that can affect current migration pat-

terns, even as those past networks may have been formed partly because the destination

had higher past wages that also influence current wages.

The solution I adopt to these identification problems is to instrument for both log(PM)

and log(wage). I follow Tombe and Zhu (2019) in instrumenting for log(wage) with a shift-

share instrument that is constructed through a weighted average of national 5-digit in-

dustry code wages, with lagged local employment shares in those 5-digit industries as

the weights. Equation 14 provides more detail. The identification assumption is that the

lagged local employment shares affect migration to those places only through their effect
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on today’s wages.

𝑤𝑎𝑔𝑒𝐼𝑉𝑑 = ∑
𝑠

𝑙𝑎𝑔_𝑒𝑚𝑝_𝑠ℎ𝑎𝑟𝑒𝑠𝑑 𝑥 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑎𝑔𝑒𝑠 (14)

where 𝑠 represents 5-digit industry code and 𝑑 represents district, 𝑙𝑎𝑔_𝑒𝑚𝑝_𝑠ℎ𝑎𝑟𝑒𝑠𝑑 is the

lagged employment share in industry 𝑠 and district 𝑑, and 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑎𝑔𝑒𝑠 is the average

national wage for each 5-digit industry 𝑠.

I instrument for log(PM) with annual smoke exposure from locations between 100-500 km

away, following the recent literature (Khanna et al. 2023). Equation 15 shows that the con-

struction of this instrument, analogous to the smoke exposure variable. The identification

assumption is that upwind burning increases location pollution but is unrelated to local

growth patterns.

Ω𝐼𝑉
𝑑 =

12/31/𝑦
∑

𝑡=1/1/𝑦
( 𝑤𝑖𝑛𝑑𝑜𝑑𝑡
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑑

)𝐸𝑜𝑡; ∀𝑜 ∋ 100 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑑 < 500 (15)

Similar to the construction of smoke exposure, emissions 𝐸𝑜𝑡 is the total strength of daily

fires within each district, measured using the Fire Radiative Power (FRP) from the NASA

FIRMS data base. The use of FRP may be more predictive of total particulate matter rela-

tive to just the count of fires.

I estimate equation 5.2 using the Poisson Pseudo-Maximum Likelihood (PPML) method

of Silva and Tenreyro (2006), as detailed in equation 16. This has several advantages

over OLS. First, unlike OLS, it handles zero values for migration count. Second, it re-

spects the adding up constraint for migration count that such gravity models imply (Fally

2015). Third, because of Jensen’s inequality, the least squares estimator of 𝑙𝑜𝑔(𝐿𝑜𝑑) on the

right hand side variables is generally an inconsistent estimator for the model elasticities,

whereas PPML is consistent (Santos Silva and Tenreyro 2022).¹⁸

¹⁸𝑙𝑜𝑔(𝐿𝑜𝑑) as the eexplanatory variable is equivalent to 𝑙𝑜𝑔(𝜋𝑜𝑑) because 𝐿𝑜 is absorbed by the origin
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𝐿𝑜𝑑 = 𝑒𝑥𝑝( 𝜂 𝑙𝑜𝑔(𝑤𝑑) [Income]

+ 𝜂𝜆 𝑙𝑜𝑔(𝑃𝑀𝑑) [Pollution disamenity]

+ 𝜂𝜈1𝑖ℎ𝑠(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑑) + 𝜂𝜈2 1(𝐿𝑎𝑛𝑔𝑜𝑑) + 𝜂𝜈3 1(𝑆𝑡𝑎𝑡𝑒𝑜𝑑) [Migration cost]

− 𝑉 𝑜 [Origin option value]

+ 𝜖𝑜𝑑) [Residual]
(16)

Although the instruments noted above help solve the endogeneity problem, an estimation

challenge arises for nonlinear panel models like PPML with IV as the incidental parame-

ters problem makes estimation inconsistent. I solve that estimation challenge by follow-

ing the method outline in Lin and Wooldridge (2019) who recommend adopting a control

function approach that proceeds in three steps: (1) estimate the first stages using OLS and

store the residuals from each of these first stages (2) include these residuals in the PPML

estimation in a second stage, in addition to the original endogenous variables. The coef-

ficients on the endogenous variables are now consistently identified, and the coefficients

on the residuals provide a valid test for endogeneity of log(PM) and log(wage) (3) estimate

standard errors using a panel bootstrap by repeating (1) and (2) on a randomly drawn

sample.

fixed effect.
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5.2.1 PPML Estimation Results

Table 3: Estimates for Income and Pollution-disamenity Elasticities of Migration

Poisson First Stage: PM First Stage: Wage Poisson w/ CF

𝐿𝑜𝑑 𝑙𝑜𝑔(𝑝𝑚) 𝑙𝑜𝑔(𝑤𝑎𝑔𝑒) 𝐿𝑜𝑑

(1) (2) (3) (4)

log(pm) [𝜂𝜆] 0.16 -0.15

(0.16) (0.16)

log(wage) [𝜂] 0.75 3.45

(0.17) (0.77)

pm IV 0.21 0.07

(0.02) (0.02)

wage IV -0.13 0.24

(0.03) (0.04)

Residual log(pm) 1.13

(0.33)

Residual log(wage) -2.07

(0.72)

Estimation Method PPML OLS OLS PPML

Observations 360000 360000 360000 360000

First Stage F-stat 91.8 9.21

Origin FE and migration costs Y Y Y Y

Notes: CF refers to control function. Sample consists of 600 districts. Clustered SEs in col 1; cluster bootstrapped SEs

in cols 2-5.

Table 3 presents the results fromestimation of equation 16 using PPML.Column1presents
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results without correcting for the endogeneity of log(wage) and log(PM). From a given ori-

gin district, a 1% higher PM2.5 level at a potential destination district is associated with

0.16% higher migration share to that district, whereas a 1% higher real wage at the desti-

nation district is associated with a 0.75% higher migration share to that district. However,

the coefficient on log(PM) is not significantly different from zero. The positive coefficient

on log(PM) is not to be interpreted as a causal estimate as it suffers from omitted variable

bias: districts with high amenities (that are in the residual) may attract more workers, thus

increases pollution from transport, a positive selection effect. The positive coefficient on

log(wage) is positive as expected, but could also suffer from a similar endogeneity prob-

lem. There could be negative selection onwages: higherwage locations tend to also attract

relatively more unskilled workers, and such high wage locations also usually have higher

amenities that are in the residual.

Columns 2 and 3 report results from first stage regressions on the two endogenous vari-

ables. There are no available weak instrument tests for the case of two endogenous instru-

ments in a nonlinear model, as is the case of the PPML estimator (D. J. Lewis and Mertens

2022; Andrews et al. 2019). Nevertheless, I report separate F-stats for the two instruments;

the instrument for log(PM) is comfortably above 10, whereas the instrument for log(wage)

is very close to 10.¹⁹ The control function approach involves including residuals from the

two first stage regressions into the PPML model with endogenous regressors. Column

4 reports results from this process. The coefficients on the residuals show that both the

log(PM) and log(wage) are indeed endogenous in column 1, with a positive and negative

selection effect respectively.

The income elasticity is given by the coefficient on log(wage): a tightly estimated 3.45. The

causal effect of a 1% increase in relative wage levels between origin and destination is

to increase migration shares to the destination district by 3.45%. The point estimate for

¹⁹ Weak instrument tests such as Cragg-Donald and Kleibergen-Paap are also not available for nonlinear
panel models with instruments.
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coefficient on log(PM) of -0.15 gives the amenity elasticity, although it is indistinguishable

from zero. The causal effect of a 1% increase in relative PM2.5 levels between origin and

destination is to reduce migration shares to the destination district by 0.15%. The income

elasticity comfortably dominates the amenity elasticity, as would be expected in a low-

income setting such as India where the marginal willingness to pay for clean air has been

estimated to be fairly low.²⁰

6 Policy Counterfactuals

I now turn to the policy questions asked at the beginning of this paper. How do income

gains from targeted pollution control depend on the productivity of cleaned-up places,

and on the productivity gains from labor reallocation? The counterfactual policies hold

all other factors such as trade costs or preferences unchanged. But in order to answer

these questions through the quantitative model, I must take a stance on the the general

equilibrium parameters that are not estimated in this paper. I source estimates from the

literature and conduct robustness of the findings to different choices.

I calibrate a key parameter in the elasticity of labor productivity to PM2.5 levels (𝛽) that
governs aggregate productivity gains in partial equilibrium. This parameter has been esti-

mated with US data on changes in the quantity of output produced by individual workers

when they are exposed to exogenous variation in daily particulate matter levels. Chang

et al. (2019) find a labor productivity elasticity of -0.09 to daily exogenous variation in

PM2.5 levels for indoor pear-packers at a factory in the US while Graff Zivin and Neidell

(2012) find an elasticity of -0.25 to daily Ozone (𝑂3) levels for outdoor fruit pickers at a

farm in the US. These high-quality estimates are based on individual worker response to

daily pollution exposure for indoor workers in manufacturing and outdoor workers in

²⁰ The MWTP for clean air is measured assuming no market failures. In the presence of market failures
such as in credit markets or simply abject poverty, theMWTPmay be small despite clean air having amenity
value.
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agriculture respectively. I set 𝛽 to -0.17 as the median of these elasticities and show ro-

bustness to other choices (Neidell 2017). The main reason to take the median is so that

the elasticity reflects differential impacts by the indoor/outdoor nature of work as well

as the sector. Evidence on the nonlinearities at extreme levels of pollution seen in devel-

oping countries is lacking, although Fu et al. (2021) calculate a larger elasticity of -0.44

with nationally representative Chinese manufacturing data. I choose a more conservative

estimate of -0.17 since evidence for India does not exist.

The agglomeration elasticity (𝜙) has been estimated by multiple studies before, with re-

views in Rosenthal and Strange (2004) and Combes and Gobillon (2015). Estimates for the

developed world seem to have converged on values between 0.01 and 0.02, but estimates

of 𝜙 for developing countries are larger in magnitude and fewer in number. I benchmark

𝜙 to the value of 0.076 estimated by Chauvin et al. (2016) using wage data for Indian dis-

tricts, relying on historical population density as the instrument for current density as is

standard in this literature. I also conduct robustness around other choices. A higher value

of 𝜙 would imply larger gains from reallocation toward denser cities.

The congestion elasticity (𝜓) controls whether cities lose some of their amenity valuewhen

population rises. There are twoprincipal sources of such congestion: a pure amenity value

𝜓𝑏 that arises from competition for public goods such as parks, and an endogenous source

arising from increases in housing rental rates 𝜓𝑟. These congestion components are on

top of the amenity value arising from clean air that is estimated in this paper. There are

comparatively few estimates for these elasticities in the literature. The pure amenity com-

ponent 𝜓𝑏 is 0 in the US data according to Albouy (2008) whereas Combes and Gobillon

(2015) estimate a value of -0.04. But, as Imbert and Papp (2020) note, workers are willing to

lose up to 35% of income by not migrating to cities due to urban disamenities that workers

are unable to avoid; therefore the pure amenity component may be larger in India. As for

the housing price elasticity, Bryan and Morten (2019) estimate a value of -0.08 for Indone-

sia. Given the prominence of informal housing in the developing world, estimates from
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Indonesia are a better fit for the Indian context. I set the congestion elasticity to -0.2 to ac-

count for the potentially larger pure amenity congestion disamenity in India, and conduct

robustness to other choices. A larger magnitude of the congestion elasticity would reduce

the incentive of workers to migrate to cities, reducing productivity gains from abatement.

6.1 Solving the Model

I implement the exact hat algebra method of Dekle et al. (2007) to solve for counterfac-

tual changes. Solving for counterfactual changes eases calibration by eliminating many

fixed components of the model such as productivities 𝐴 and amenities 𝐵. The second

advantage of this method is that it only requires changes in migration costs and is there-

fore robust to any bias in the measurement of migration frictions that remains constant in

the counterfactual. I only need to specify parameters of the model (𝑔(.), 𝜂, 𝜆, 𝛽, 𝜙, 𝜓) and

initial values (𝜋𝑜𝑑, 𝐿𝑜) Table 4 summarizes model parameters and initial values.

Table 4: Model parameters and initial values

Parameter Description Value

𝑔(.) Impact of smoke exposure on PM2.5 Cubic fit

𝜆 Pollution-disamenity elasticity of migration 0

𝜂 Income elasticity of migration 3.45

𝛽𝑛 Productivity elasticity of Pollution -0.17

𝜙 Agglomeration elasticity 0.076

𝜓 Congestion elasticity -0.2

Notes: Please see text for detail on estimation or calibration ↩
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6.2 Simulations Hold Fixed Health Benefits from Policies

Before delving into the results, let us remind ourselves of the two policies under consider-

ation. The crop burning policy reduces crop burning by 10% in Punjab and Haryana. The

urban emissions policy reduces pollution by a uniform percentage amount in the largest

cities such that the total population x change in pollution is equal for both these policies.

As per standard regulatory guidelines from the US EPA and European Environmental

Agency, these two policies would be rated similar (or exactly the same with linear dose-

response functions). The crop burning policy targets emissions in rural areas and, due to

avoided long-distance dispersion effects, also reduces pollution in downwind cities. On

the other hand, the urban emissions policy reduces pollution exclusively in the 10 largest

cities due to the nature of sources it targets (vehicle and cookstove emissions decay rapidly,

and do not affect areas more than a few kilometers away).

I normalize the total population-exposure reduction to be the same in both the policies. As

discussed in section 3.2, this normalization leads to similar health benefits from the two

policies. A linear dose-response function would lead to identical health benefits, whereas

a concave dose-response function for some health outcomeswould produce slightly larger

health benefits from the crop burning policy. The latter is the case because rural pollution

levels are lower than urban levels, and a concave damage function implies higher damages

(and hence benefits from control) at lower pollution levels.

The normalization itself is done by estimating the population x change in pollution for the

crop burning policy, while holding the spatial allocation of labor fixed. I then calculate the

percentage change amount in pollution that when applied equally to all 10 cities would

produce the same population x change in pollution, keeping the population in those cities

fixed. A uniform 7% reduction in PM2.5 levels in the 10 largest cities produces a similar

health benefit to a 10% reduction in burning emissions. For every crop burning coun-

terfactual I conduct, I re-estimate the uniform percentage reduction in PM2.5 for the 10
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largest cities that would produce an equivalent population-exposure reduction. Figure ??

shows the change in PM2.5 levels across districts due to either policy.

6.3 Gains from Pollution Control due to Place-specific Productivity

Let us now analyze how income gains from these two health-equivalent policies depend

on the productivity of places that they clean up. These results hold the spatial allocation

of labor fixed in the policy counterfactuals. Table 5 displays these results. The first row

reports gains in national income due to the crop burning policy while the second row re-

ports the same for the urban emissions policy. Gains from the urban policy are 3 times the

crop burning policy when accounting only for the pre-existing differences in productivity

of places where pollution was reduced as a result of the two policies.
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Table 5: Role of place-
specific productivity differ-
ences

Policy GDP gain

CRB policy 0.32

Urban policy 0.91

Notes: CRB refers to crop

residue burning. The num-

bers in this table are a per-

centage of initial GDP. These

counterfactuals hold labor al-

location fixed across space, as

observed in the initial data.
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6.4 Gains from Pollution Control due to Labor Reallocation

Next, I analyze how income gains from these two health-equivalent policies depend on the

spatial reallocation of labor that they induce. This reallocation occurs because changes in

expected pollution levels as a result of the control policies change the relative productivity

and wages across locations, causing some marginal workers to receive higher utility from

moving to a cleaned-up location.²¹ The strnegth of the labor reallocation mechanism is

governed by the two migration elasticites that were estimated earlier.

Table 6 displays income gains accounting for spatial reallocation of labor. Column 2 in the

first (second) row reports total gains in national income, including both the place-based

productivity and labor reallocation mechanisms, due to the crop burning (urban emis-

sions) policy. Gains from the urban policy are ~6 times the crop burning policy when also

accounting for the reallocation of labor induced by the pollution policies. The third col-

umn shows income gains exclusively from the labor reallocationmechanism. Almost none

of the total gains from the crop burning policy are due to labor reallocation, as opposed

to more than half of the total gains from the urban emissions policy.

What explains these starkly different results? Figure ?? (??) maps which locations lose or

gains workers as a result of the crop burning (urban emissions) policy. Both policies in-

duce reallocation. However, the key difference is the places into which labor reallocation

occurs. The crop burning policy induces reallocation into less productive rural areas that

are disproportionately cleaned up due to the policy. On the other hand, the urban emis-

sions policy reallocates workers into the most productive cities of India, and amplifying

agglomeration economies as a result.

²¹If the disamenity value of pollution were also included, some marginal workers would move as a result
of direct utility effects of improved air quality, not just because of utility increases from higher wages. I
explore this possibility in robustness tests.
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Table 6: Income gains from labor productivity differences and labor reallocation

Policy Total GDP gain GDP gain from reallocation

CRB control in northwestern India 0.34 0.02

Localized emissions control in largest cities 1.88 0.97

Notes: CRB refers to crop residue burning. The numbers in this table are a percentage of initial GDP.

These counterfactuals allow spatial labor allocation to adjust after a change in pollution across space.

7 Conclusion

This paper studies the mechanisms by which targeted pollution control policies can pro-

duce income gains. Two features of pollution sources determine the importance of these

mechanisms: the location of the source, and its long-distance pollution effect. I conduct

policy simulations based on recent government programs that either target sources such

as crop residue burning in rural areas of northwestern that disperse smoke over long

distances, or localized emissions from vehicles and cookstoves that affect only local air

quality in the 10 largest cities. These policy simulations hold fixed the total population

exposure reduction from these two policies by normalizing pollution reduction from the

urban emissions policy to estimated reductions in pollution over space. I develop a smoke

dispersion model and estimate a pollution-smoke exposure relationship in order to quan-

tify the pollution reduction from crop residue burning. Even though the two policies will

be rated similar on health impacts since standard regulatory guidance use dose-response

functions for mortality effects of pollution that are mostly linear, the two policies reduce

pollution in very different places: rural areas for burning and urban areas for localized

emissions.

I then show that increases in district pollution reduce worker in-migration in India, us-
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ing exogenous variation in pollution driven by shifts in upwind burning activity. This

spatial labor reallocation may be caused by lower expected wages due to pollution or the

disamenity value of pollution. In general equilibrium, the distribution of pollution and

workers is determined jointly through sorting across districts. To account for the move-

ment of people and pollution across space, I develop a spatial equilibrium model of lo-

cation choice that also incorporates a pollution dispersion model. I take the labor supply

equation across districts predicted by the model to data on pairwise migration across In-

dian districts to estimate the income and pollution-disamenity elasticities. Utilizing in-

strumental variables to correct for endogeneity, I find an income elasticity of 3.45 and an

amenity elasticity of -0.15, although the latter is not statistically different from zero.

I then simulate the two policies of interest. Income gains from the place-specific pro-

ductivity mechanism for the urban emissions policy are almost 3 times larger than the

crop burning policy, because health improvement for workers in cities generate larger eco-

nomic value. The labor reallocation mechanism reinforces this effect: total income gains

when also accounting for labor reallocaitona re almost 6 times larger for urban emissions

policy. Reallocation accounts for <1% of the total income gains for crop burning since the

reallocation induced by that policy is toward less productive rural areas. On the other

hand, the urban emissions policy induces reallocation to the largest cities and amplifies

existing agglomeration economies, and reallocation accounts for more than half of the

total gains from urban emissions control.

Despite limited gains from reallocation for the crop burning policy that reduces emissions

by 10% in northwestern India, I calculate a benefit-cost ratio of 96 using estimates of the

marginal abatement cost per acre not burnt from Jack et al. (2022), and own estimates

of how much crop area needs to be left unburnt to achieve 10% lower emissions. This

suggests the failure of a Coasian bargaining process wherein other states, particularly in

North India, could compensate farmers in Punjab and Haryana for a costly reduction in

fires. This failure may be down to lack of regulation of the pollution externality at the ap-
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propriate level (Banzhaf and Chupp 2012; Lipscomb andMobarak 2017; Kahn et al. 2015),

or to low levels of economic development where credit constraints and weak regulatory

capacity are common (Jayachandran 2022; Besley and Persson 2009; Jack et al. 2022).

Finally, this paper underlines the importance of accounting for the interactions between

economic and geographic mechanisms for income gains from pollution control policies.

This has implications for targeting pollution control in developing countries because the

fiscal constraints under which they operate may require such a targeted approach, and

because policies that produce larger income gains are also important in bridging the fiscal

gap between government revenue and spending.
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9 Appendix

9.1 Appendix Tables

Table 7: Summary Statistics

Variable N Mean SD Min Max

Panel A: District data for estimation of burning intensity 𝛿, 2011)

Worker count (million) 601 0.4 0.37 0.0006 3.1

Fire Emissions (Watts) 601 1275 3225 0 32845

Panel B: Pixel data for estimation of dispersal paraemter 𝜏 (2002-2016)

PM2.5 (microgram/m3) 9255 56.3 27.1 10.4 148

Fire Exposure (Watts) 9255 554.2 311.1 90.6 2605

Panel C: District data for estimation of migration elasticies 𝜂 and 𝜆 (2010)

Migration count 360000 3289.1 87690 0 10144530

Wage (Rs) 360000 254 170 77 2757

PM2.5 (microgram/m3) 360000 55.6 25.5 12.1 123

Distance (km) 360000 1032.1 572 0 3005

Language indicator 360000 0.735 0.441 0 1

PM IV (Count) 360000 21850 42525 44.3 123696

Wage IV (Rs) 360000 239.789 105.071 102.577 991

Notes: Summarizes the data used to estimate the main parameters of the quantitative

model. Panel A presents district level data on worker count and fire activity for 601 dis-

tricts. Panel B describes pixel level fire counts, fire exposures and particulate matter data

at district level. Panel C describes pair-wise migration shares data across 600 districts from

the 2011 census. The data correspond to the period of April 2010 - December 2010, with

average particulate matter for calendar year 2010. ↩
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9.2 Appendix Figures
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Figure A.1: Productivity Increases with Density
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9.3 Other Functional Forms for Impact of Smoke Exposure on PM2.5

Table A.1 shows the results of a cubic fit for the impact of smoke exposure on PM2.5.

Table A.1: Effect of District Smoke Ex-
posure on PM2.5

Dep var: PM2.5

Smoke Exposure 0.86

(0.46)

Smoke Exposure-squared -0.04

(0.02)

Smoke Exposure-cubed 0.0006

(0.0002)

Observations 9,255

Notes: Years 2002-2016. SEs clustered at dis-

trict X year.

Estimated functional forms other than a third order polynomial include linear and

quadratic, logarithmic, inverse hyporbolic sine fits, and a log-log elasticity.

9.4 Causes of Crop Burning

These two states of Punjab and Haryana are characterized by a rice-wheat cultivation sys-

tem. In these rice-wheat systems, rice is cultivated during the monsoon or “Kharif” sea-

son (June-November) while the wheat crop is cultivated in the winter or “Rabi” season

(December-April). The rice crop harvesting process leaves a residue in the field that must
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be removed before planting of wheat in early Rabi season. Wheat must also be planted in

the first weeks of winter in order to get optimal yields. Fires are a cheap technology that

can be used to remove this residue. The short duration between the rice harvest in late

October and the optimal wheat planting window in early November further incentivizes

farmers to burn the residue.

The rice-wheat systemhas its roots in theGreenRevolution of the 1960s. Until then, North-

Western India was a primarily wheat-growing region with little rice consumption or pro-

duction locally. The advent of the Green Revolution brought with it many institutional

innovations from the Indian State that increased agricultural productivity substantially

across India. In the states of Punjab and Haryana, this took the form of massive subsidies

for tubewells which could be used to access shallow groundwater to irrigate fields that

did not have access to the pre-existing large canals systems built by the colonial British

empire. This newfound access to groundwater allowed farmers to diversify their crop

portfolio during the monsoon months by allowing the cultivation of water-intensive rice

crop. The state of Punjab contributed less than 1% of India’s rice in 1961; by the late 1990s

this figure was up to 10%, even as total rice output across India also increased substan-

tially. The use of fires to clear rice residue started in the 1990s. The earliest observations

of fires from the NASA FIRMS database starting in 2002 clearly demonstrate that North-

western India already had a disproportionate share of fires in Indian agriculture.

9.5 Burning Emissions are Linear in Crop Area

As discussed in 3, the main determinant of the extent of crop burning in each district is

the quantity of rice and wheat produced, mediated by institutional features of that partic-

ular state. In order to calculate back-of-the-envelope abatement costs for the crop burning

policy, we need to convert the 10% emissions reduction into an estimate of the crop area

that is not burnt. Once we have that, we can use per-acre marginal abatement costs of $54
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from Jack et al. (2022) to calculate total abatement costs.

In order to do this, I mode agricultural emissions 𝐸𝑑 as a function of area under rice cul-

tivation, where 𝑓𝐸
𝑑 captures both the rice residue that is produced and burnt in a given

district. I distinguish between districts in Punjab and Haryana, and the rest of India since

for the same amount of rice residue, there may be much less burning in the rest of India

due to contextual and institutional differences, as described in 3.

𝐸𝑑 = 𝑓𝐸
𝑑 (𝑅𝑖𝑐𝑒𝐴𝑟𝑒𝑎𝑑) (17)

Figure A.2: Burning Intensity Differs for Punjab and Haryana ↩

Figure A.2 demonstrates that institutional differences drive the increased prevalence of

agricultural fires in Punjab and Haryana rice-wheat system. It also shows that the func-

tional form of 𝑓𝐸
𝑑 (.) is likely linear. Equation 18, shows the estimating equation. The

dummy variable 𝐷𝑑 turns on for districts in Punjab and Haryana only. 𝐸𝑑 represents an-

nual fire radiative power and 𝑅𝑖𝑐𝑒𝐴𝑟𝑒𝑎𝑑 is the total area under rice cultivation in district

𝑑. The state fixed effects capture any level differences in technology across states that may
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also drive the rate of burning. The objects of interest are 𝛿𝑝 and 𝛿𝑛𝑝: the (linear) burning

intensities of rice crop in Punjab and Haryana, and the rest of India.

𝐸𝑑 = 𝛿𝑝 𝐷𝑑 ∗ 𝑅𝑖𝑐𝑒𝐴𝑟𝑒𝑎𝑑

+ 𝛿𝑛𝑝 (1 − 𝐷𝑑) ∗ 𝑅𝑖𝑐𝑒𝐴𝑟𝑒𝑎𝑑

+ ̄𝐸𝑠(𝑑) + 𝜖𝑑

(18)

Table ?? confirms the result shown in the figure A.2. The coefficient for districts in Punjab

and Haryana is much larger than for the rest of the country, reflecting the higher preva-

lence of residue burning activity.
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Fire Radiative Power

Linear Quadratic

Area x 1(Punjab/Haryana) 3.7 1.04

(0.8) (1.7)

Area2 x 1(Punjab/Haryana) 0.7

(0.33)

Area x 1(Rest of India) 0.4 0.47

(0.16) (0.42)

Area2 x 1(Rest of India) -0.05

(0.09)

Observations 612 612

State FE Y Y

Power in gigawatts. Crop area in million ha. SEs clus-

tered at state level

9.6 Cost-benefit Calculation for Crop Burning Policy

I calculate a back-of-the-envelope benefit-cost ratio for the crop burning policy, assuming

that it can be achieved through a Payment for Ecosystem Services policy that would di-

rectly pay farmers not to burn. Jack et al. (2022) conduct an RCT where they show that

such a policy can indeed lead to substantial reduction in burning activity. In particular,

the treatment arm where they provide a portion of money upfront to alleviate credit con-

straints reduces burning by 10%. They also provide an abatement cost estimate of $50

per acre of rice planted. The crop burning policy imposes a reduction in emissions of
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about 10% in Punjab and Haryana. Using the linear relationship between crop area and

burning emissions in the previous section, this policy would require payment for about

10% of the total rice acreage of 11.12 million acres. Thus, I calculate a total abatement

cost of (0.1*11.12*50)/1000 = $0.06 billion per year. Total GDP benefit for all of India is

(0.34*1700)/100 = $5.78 billion per year, given a GDP of $1.7 trillion in 2011. This provides

a benefit-cost ratio of 96. Some important caveats with this calculation are that the abate-

ment costs might be nonlinear in rice acreage or differ for other districts of Punjab and

Haryana that were not in the sample for Jack et al. (2022).
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